Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biofabrication ; 6(4): 041001, 2014 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-25336511

RESUMO

Biostable fiber-reinforced composites, based on bisphenol-A-dimethacrylate and triethyleneglycoldimethacrylate thermoset polymer matrix reinforced with E-glass fibers have been successfully used in cranial reconstructions and the material has been approved for clinical use. As a further refinement of these implants, antimicrobial, non-cytotoxic coatings on the composites were created by an immersion procedure driven by strong electrostatic interactions. Silver nanoparticles (nAg) were immobilized in lactose-modified chitosan (Chitlac) to prepare the bacteriostatic coatings. Herein, we report the use of inkjet technology (a drop-on-demand inkjet printer) to deposit functional Chitlac-nAg coatings on the thermoset substrates. Characterization methods included scanning electron microscopy, scanning white light interferometry and electro-thermal atomic absorption spectroscopy. Inkjet printing enabled the fast and flexible functionalization of the thermoset surfaces with controlled coating patterns. The coatings were not impaired by the printing process: the kinetics of silver release from the coatings created by inkjet printing and conventional immersion technique was similar. Further research is foreseen to optimize printing parameters and to tailor the characteristics of the coatings for specific clinical applications.


Assuntos
Bioimpressão/métodos , Quitosana/química , Materiais Revestidos Biocompatíveis/química , Lactose/química , Nanocompostos/química , Prata/química , Biotecnologia/métodos , Substitutos Ósseos , Próteses e Implantes
2.
J Mater Sci Mater Med ; 24(12): 2775-85, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23922117

RESUMO

Biostable fiber-reinforced composite (FRC) implants prepared from bisphenol-A-dimethacrylate and triethyleneglycoldimethacrylate resin reinforced with E-glass fibers have been successfully used in cranial reconstructions in 15 patients. Recently, porous FRC structures were suggested as potential implant materials. Compared with smooth surface, porous surface allows implant incorporation via bone ingrowth, but is also a subject to bacterial attachment. Non-cytotoxic silver-polysaccharide nanocomposite coatings may provide a way to decrease the risk of bacterial contamination of porous FRC structures. This study is focused on the in vitro characterization of the effect porosity on the antimicrobial efficiency of the coatings against Staphylococcus aureus and Pseudomonas aeruginosa by a series of microbiological tests (initial adhesion, antimicrobial efficacy, and biofilm formation). Characterization included confocal laser scanning microscopy and scanning electron microscopy. The effect of porosity on the initial attachment of S. aureus was pronounced, but in the case of P. aeruginosa the effect was negligible. There were no significant effects of the coatings on the initial bacterial attachment. In the antimicrobial efficacy test, the coatings were potent against both strains regardless of the sample morphology. In the biofilm tests, there were no clear effects either of morphology or of the coating. Further coating development is foreseen to achieve a longer-term antimicrobial effect to inhibiting bacterial implant colonization.


Assuntos
Anti-Infecciosos/química , Quitosana/química , Polissacarídeos/química , Prata/química , Aderência Bacteriana/efeitos dos fármacos , Compostos Benzidrílicos/química , Biofilmes , Osso e Ossos , Quitosana/análogos & derivados , Resinas Compostas , Lactose/análogos & derivados , Lactose/química , Metacrilatos/química , Testes de Sensibilidade Microbiana , Polietilenoglicóis/química , Ácidos Polimetacrílicos/química , Porosidade , Próteses e Implantes , Pseudomonas aeruginosa , Staphylococcus aureus
3.
Dent Mater ; 28(11): 1134-45, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22925703

RESUMO

OBJECTIVES: Glass-fiber-reinforced composites (FRCs), based on bifunctional methacrylate resin, have recently shown their potential for use as durable cranioplasty, orthopedic and oral implants. In this study we suggest a multi-component sandwich implant structure with (i) outer layers out of porous FRC, which interface the cortical bone, and (ii) inner layers encompassing bioactive glass granules, which interface with the cancellous bone. METHODS: The capability of Bioglass(®) 45S5 granules (100-250µm) to induce calcium phosphate formation on the surface of the FRC was explored by immersing the porous FRC-Bioglass laminates in simulated body fluid (SBF) for up to 28d. RESULTS: In both static (agitated) and dynamic conditions, bioactive glass granules induced precipitation of calcium phosphate at the laminate surfaces as confirmed by scanning electron microscopy. SIGNIFICANCE: The proposed dynamic flow system is useful for the in vitro simulation of bone-like apatite formation on various new porous implant designs containing bioactive glass and implant material degradation.


Assuntos
Cerâmica/química , Resinas Compostas/química , Implantes Dentários , Durapatita/síntese química , Vidro/química , Osseointegração , Resinas Acrílicas/química , Líquidos Corporais , Fosfatos de Cálcio/síntese química , Precipitação Química , Análise do Estresse Dentário , Hidrodinâmica , Teste de Materiais , Porosidade , Propriedades de Superfície
5.
J Mech Behav Biomed Mater ; 4(8): 1797-804, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22098879

RESUMO

Glass-fibre-reinforced composites (FRCs) are under current investigation to serve as durable bone substitute materials in load-bearing orthopaedic implants and bone implants in the head and neck area. The present form of biocompatible FRCs consist of non-woven E-glass-fibre tissues impregnated with varying amounts of a non-resorbable photopolymerisable bifunctional polymer resin with equal portions of both bis-phenyl-A-glycidyl dimethacrylate (BisGMA) and triethyleneglycol dimethacrylate (TEGDMA). FRCs with a total porosity of 10-70 vol% were prepared, more than 90 vol% of which being functional (open pores), and the rest closed. The pore sizes were greater than 100 µm. In the present study, the push-out test was chosen to analyse the shear strength of the interface between mechanically interlocked gypsum and a porous FRC implant structure. Gypsum was used as a substitute material for natural bone. The simulative in vitro experiments revealed a significant rise of push-out forces to the twofold level of 1147 ± 271 N for an increase in total FRC porosity of 43%. Pins, intended to model the initial mechanical implant fixation, did not affect the measured shear strength of the gypsum-FRC interface, but led to slightly more cohesive fracture modes. Fractures always occurred inside the gypsum, it having lower compressive strength than the porous FRC structures. Therefore, the largest loads were restricted by the brittleness of the gypsum. Increases of the FRC implant porosity tended to lead to more cohesive fracture modes and higher interfacial fracture toughness. Statistical differences were confirmed using the Kruskal-Wallis test. The differences between the modelled configuration showing gypsum penetration into all open pores and the real clinical situation with gradual bone ingrowth has to be considered.


Assuntos
Substitutos Ósseos/química , Vidro/química , Teste de Materiais/métodos , Resistência ao Cisalhamento , Sulfato de Cálcio/química , Porosidade , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...