Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 94(17): 6463-6472, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35435669

RESUMO

Raman thermometry based on surface-enhanced Raman scattering has been developed using nanopipettes in cancer cell photothermal therapy (PTT). Gold nanorods (AuNRs) are robustly epoxied on glass pipettes with a high surface coverage of ∼95% and less than 10 nm-wide nanogaps for intracellular thermometry and photothermal cancer therapy. The temperature changes could be estimated from the N≡C band shifts of 4-fluorophenyl isocyanide (FPNC)-adsorbed AuNRs on the Raman thermometry nanopipette (RTN) surfaces. An intracellular temperature change of ∼2.7 °C produced by altering the [Ca2+] in A431 cells was detected using the RTN in vitro, as checked from fura-2 acetoxymethyl ester (fura-2 AM) fluorescence images. For in vivo experiments, local temperature rises of ∼19.2 °C were observed in the mouse skin, whereas infrared camera images could not tract due to spatial resolution. In addition, a tumor growth suppression was observed in the PTT processes after an administration of the three AuNR-coated nanopipettes combined with a 671 nm laser irradiation for 5 min in 30 days. These results demonstrate not only the localized temperature sensing ability of FPNC-tagged AuNR nanopipettes in cell biology but also anti-cancer effects in photothermal cancer therapy.


Assuntos
Nanotubos , Neoplasias , Termometria , Animais , Linhagem Celular Tumoral , Fura-2 , Ouro , Camundongos , Neoplasias/diagnóstico por imagem , Neoplasias/patologia , Neoplasias/terapia , Terapia Fototérmica
2.
Chem Commun (Camb) ; 57(71): 8961-8964, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34486587

RESUMO

Optical properties of anisotropic gold nanorod arrays inside anodic aluminium oxide substrates enhance the longitudinal absorption intensities and the hyperthermia cancer cell killing at 42.1 °C under photothermal laser exposures at 671 nm.


Assuntos
Antineoplásicos/farmacologia , Nanotubos/química , Terapia Fototérmica/métodos , Óxido de Alumínio/química , Óxido de Alumínio/farmacologia , Óxido de Alumínio/efeitos da radiação , Antineoplásicos/química , Antineoplásicos/efeitos da radiação , Morte Celular/fisiologia , Ouro/química , Ouro/farmacologia , Ouro/efeitos da radiação , Células HeLa , Humanos , Nanotubos/efeitos da radiação
3.
Chemosphere ; 263: 127812, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32822947

RESUMO

In this study, a systematic multi-spectroscopic analysis of microplastics (MPs) sampled from a metropolitan area of Seoul was undertaken to elevate understanding of the role of wastewater treatment plants (WWTPs) in eliminating suspended contaminants including MPs before releasing the effluent water into the environment. We analyzed pollutants in influent and effluent samples from a WWTP in Seoul, South Korea. Spectroscopic and microscopic methods were used to analyze MPs. Fourier-transform infrared (FT-IR) spectroscopy in the wavenumber region between 4000 and 715 cm-1 was employed to estimate the abundance of MPs in wastewater. Stereomicroscope images and Nile red staining were used to facilely identify MPs in both influents and effluents to compare the results with those of FT-IR data. Hyperspectral imaging could identify MPs in the influent sample with the reflection method at 400-900 nm. Our preliminary results indicate that the most observed MPs after the wastewater were filtered by a 45 µm stainless steel mesh filter were polyethylene (PE) and polypropylene (PP). The total number of the prevalent MPs in influent samples decreased significantly. Nanostructure particles could be found by field-emission scanning electron microscopy (FE-SEM). Our combined multi-spectroscopic study should be helpful to provide a guideline for the rapid spectroscopic analysis of freshwater in the Han River, Seoul, South Korea.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Monitoramento Ambiental , Microplásticos , Plásticos , República da Coreia , Seul , Espectroscopia de Infravermelho com Transformada de Fourier , Águas Residuárias , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA