Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dent Mater ; 38(7): 1149-1161, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35680429

RESUMO

OBJECTIVES: To evaluate the inhibitory effect of a novel mussel-inspired monomer (N-(3,4-dihydroxyphenethyl)methacrylamide (DMA) on the soluble and matrix-bound proteases. METHODS: The inhibitory effect of DMA (0, 1, 5, and 10 mM) and 1 mM chlorhexidine (CHX) dissolved in 50% ethanol/water on soluble recombinant human matrix metalloproteinases (rhMMP-2, -8, and -9), as well as cysteine cathepsins (B and K) were evaluated using both fluorometric assay kits and molecular docking. The effect of CHX and DMA on matrix-bound proteases was examined by in situ zymography, and the fluorescence intensity and relative area were calculated by Image J software. All data obtained were analyzed by one-way ANOVA followed by Tukey test (α = 0.05). RESULTS: The anti-proteolytic ability of DMA increased in a dose-dependent manner except that of rhMMP-9. Inhibitory effect of 1 mM DMA against rhMMP-2, - 8, - 9, as well as cathepsin B and K was all significantly lower than 1 mM CHX (p < 0.05). The molecular docking analysis was in good agreement with the experimental results, that the binding energy of DMA was lower than CHX for all proteases. In situ zymography revealed that all DMA- and CHX-treated groups significantly inactivated the matrix-bound proteases, with a dramatic reduction of the fluorescence intensity and relative area compared with the control group (p < 0.05). SIGNIFICANCE: Under the prerequisite condition that the overall inhibitory performance on matrix-bound proteases was comparable by DMA and CHX, the more selective property of DMA could avoid inducing potential negative effects by suppressing MMP-9 when applied in dental treatment compared with CHX.


Assuntos
Anti-Infecciosos , Dentina , Anti-Infecciosos/farmacologia , Clorexidina/farmacologia , Colágeno/farmacologia , Dentina/química , Humanos , Metaloproteinases da Matriz/metabolismo , Simulação de Acoplamento Molecular , Inibidores de Proteases/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA