Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(4)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38398205

RESUMO

The development of new tools against glioblastoma multiforme (GBM), the most aggressive and common cancer originating in the brain, remains of utmost importance. Lentiviral vectors (LVs) are among the tools of future concepts, and pseudotyping offers the possibility of tailoring LVs to efficiently transduce and inactivate GBM tumor cells. Zika virus (ZIKV) has a specificity for GBM cells, leaving healthy brain cells unharmed, which makes it a prime candidate for the development of LVs with a ZIKV coat. Here, primary GBM cell cultures were transduced with different LVs encased with ZIKV envelope variants. LVs were generated by using the pNLgfpAM plasmid, which produces the lentiviral, HIV-1-based, core particle with GFP (green fluorescent protein) as a reporter (HIVgfp). Using five different GBM primary cell cultures and three laboratory-adapted GBM cell lines, we showed that ZIKV/HIVgfp achieved a 4-6 times higher transduction efficiency compared to the commonly used VSV/HIVgfp. Transduced GBM cell cultures were monitored over a period of 9 days to identify GFP+ cells to study the oncolytic effect due to ZIKV/HIVgfp entry. Tests of GBM tumor specificity by transduction of GBM tumor and normal brain cells showed a high specificity for GBM cells.

2.
Int J Mol Sci ; 24(19)2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37833934

RESUMO

A fundamental idea for targeting glioblastoma cells is to exploit the neurotropic properties of Zika virus (ZIKV) through its two outer envelope proteins, prM and E. This study aimed to develop envelope glycoproteins for pseudotyping retroviral vectors that can be used for efficient tumor cell infection. Firstly, the retroviral vector pNLlucAM was packaged using wild-type ZIKV E to generate an E-HIVluc pseudotype. E-HIVluc infection rates for tumor cells were higher than those of normal prME pseudotyped particles and the traditionally used vesicular stomatitis virus G (VSV-G) pseudotypes, indicating that protein E alone was sufficient for the formation of infectious pseudotyped particles. Secondly, two envelope chimeras, E41.1 and E41.2, with the E wild-type transmembrane domain replaced by the gp41 transmembrane and cytoplasmic domains, were constructed; pNLlucAM or pNLgfpAM packaged with E41.1 or E41.2 constructs showed infectivity for tumor cells, with the highest rates observed for E41.2. This envelope construct can be used not only as a tool to further develop oncolytic pseudotyped viruses for therapy, but also as a new research tool to study changes in tumor cells after the transfer of genes that might have therapeutic potential.


Assuntos
Glioblastoma , HIV-1 , Infecção por Zika virus , Zika virus , Humanos , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Zika virus/genética , Zika virus/metabolismo , Glicoproteínas de Membrana/genética , HIV-1/metabolismo , Glioblastoma/genética , Vetores Genéticos/genética
3.
Methods Protoc ; 7(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38251196

RESUMO

Flaviviruses are a family of RNA viruses that includes many known pathogens, such as Zika virus (ZIKV), West Nile virus (WNV), dengue virus (DENV), and yellow fever virus (YFV). A pseudotype is an artificial virus particle created in vitro by incorporating the flavivirus envelope proteins into the structure of, for example, a retrovirus such as human immunodeficiency virus type-1 (HIV-1). They can be a useful tool in virology for understanding the biology of flaviviruses, evaluating immune responses, developing antiviral strategies but can also be used as vectors for gene transfer experiments. This protocol describes the generation of a ZIKV/HIV-1 pseudotype developed as a new tool for infecting cells derived from a highly malignant brain tumor: glioblastoma multiforme grade 4.

4.
Opt Express ; 30(21): 38630-38642, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36258423

RESUMO

We report the fabrication of a mid-infrared device using LaB6 - Al2O3 - LaB6 trilayers, with an array of LaB6 strips as the top layer. Uniaxially oriented lanthanum hexaboride (LaB6) films self-organized in a (100) orientation were adopted together with a lithographic process using laser direct writing followed by reactive ion etching. The fabricated infrared absorbers based on our electromagnetic design exhibited excellent resonant absorption and flexible tunability by changing the periodicity and width of the top LaB6 strips. We examined the performance of epitaxial and sputtered LaB6 films by fabricating two different types of absorbers using sputtered LaB6(100) and epitaxial LaB6(100) films for the bottom mirror layers. Owing to a difference in crystallinity, the latter exhibited a lower background in the absorption spectra as well as in the thermal emission spectra, indicating its good spectral selectivity.

5.
Commun Biol ; 4(1): 1370, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34876695

RESUMO

Altered glycosylation plays an important role during development and is also a hallmark of increased tumorigenicity and metastatic potentials of several cancers. We report here that Tankyrase-1 (TNKS1) controls protein glycosylation by Poly-ADP-ribosylation (PARylation) of a Golgi structural protein, Golgin45, at the Golgi. TNKS1 is a Golgi-localized peripheral membrane protein that plays various roles throughout the cell, ranging from telomere maintenance to Glut4 trafficking. Our study indicates that TNKS1 localization to the Golgi apparatus is mediated by Golgin45. TNKS1-dependent control of Golgin45 protein stability influences protein glycosylation, as shown by Glycomic analysis. Further, FRAP experiments indicated that Golgin45 protein level modulates Golgi glycosyltransferease trafficking in Rab2-GTP-dependent manner. Taken together, these results suggest that TNKS1-dependent regulation of Golgin45 may provide a molecular underpinning for altered glycosylation at the Golgi during development or oncogenic transformation.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Glicosiltransferases/farmacocinética , Transdução de Sinais , Tanquirases/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Glicosilação , Glicosiltransferases/metabolismo , Humanos , Transporte Proteico , Tanquirases/metabolismo
6.
Micromachines (Basel) ; 11(1)2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31878232

RESUMO

Among conductive oxide materials, niobium doped titanium dioxide has recently emerged as a stimulating and promising contestant for numerous applications. With carrier concentration tunability, high thermal stability, mechanical and environmental robustness, this is a material-of-choice for infrared plasmonics, which can substitute indium tin oxide (ITO). In this report, to illustrate great advantages of this material, we describe successful fabrication and characterization of niobium doped titanium oxide nanoantenna arrays aiming at surface-enhanced infrared absorption spectroscopy. The niobium doped titanium oxide film was deposited with co-sputtering method. Then the nanopatterned arrays were prepared by electron beam lithography combined with plasma etching and oxygen plasma ashing processes. The relative transmittance of the nanostrip and nanodisk antenna arrays was evaluated with Fourier transform infrared spectroscopy. Polarization dependence of surface plasmon resonances on incident light was examined confirming good agreements with calculations. Simulated spectra also present red-shift as length, width or diameter of the nanostructures increase, as predicted by classical antenna theory.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...