Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 23(31): 16516-16524, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34137397

RESUMO

A series of ruthenium photosensitizers incorporating a ß-diketonate non-innocent ligand were synthesized, characterized, and implemented in dye-sensitized solar cells. Electrochemical studies exhibited well behaved reversible oxidations and reductions for all ß-diketonate complexes. The acac- and Ph2acac- based photosensitizers possess limited delocalization across the ligand π*-manifold, which is significant for exhibition of respectable power conversion efficiencies in a dye-sensitized solar cell (DSC) device. As the π-orbital network was extended on the flavone and curcumin inspired NILs, increased molar absorptivity was observed, however this ultimately proved detrimental to DSC performance consistent with exhibition of negligible photocurrent.

2.
Front Chem ; 7: 628, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31608271

RESUMO

The subject of this study [fac-Mn(bqn)(CO)3(CH3CN)]+ (bqn = 2,2'-biquinoline), is of particular interest because the bqn ligand exhibits both steric and electronic influence over the fundamental redox properties of the complex and, consequently, its related catalytic properties with respect to the activation of CO2. While not a particularly efficient catalyst for CO2 to CO conversion, in-situ generation and activity measurements of the [fac-Mn(bqn)(CO)3]- active catalyst allows for a better understanding of ligand design at the Mn center. By making direct comparisons to the related 2,2'-bipyridyl (bpy), 1,10-phenanthroline (phen), and 2,9-dimethyl-1,10-phenanthroline (dmphen) ligands via a combination of voltammetry, infrared spectroelectrochemistry, controlled potential electrolysis and computational analysis, the role of steric vs. electronic influences on the nucleophilicity of Mn-based CO2 reduction electrocatalysts is discussed.

3.
Chemistry ; 23(31): 7497-7507, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28188642

RESUMO

An alternative approach to replacing the isothiocyantate ligands of the N3 photosensitizer with light-harvesting bidentate ligands is investigated for application in dye-sensitized solar cells (DSSCs). An in-depth theoretical analysis has been applied to investigate the optical and redox properties of four non-innocent ligand platforms, which is then corroborated with experiment. Taking advantage of the 5- and 7-positions of 8-oxyquinolate, or the carboxyaryl ring system of the N-arylcarboxy-8-amidoquinolate ligand, fluorinated aryl substituents are demonstrated as an effective means of tuning complex redox potentials and light-harvesting properties. The non-innocent character, resulting from mixing of both the central metal-dπ and ligand-π manifolds, generates hybrid metal-ligand frontier orbitals. These play a major role by contributing to the redox properties and visible electronic transitions, and promoting an improved power conversion efficiency in a Ru DSSC device featuring non-innocent ligands.

4.
J Am Chem Soc ; 139(7): 2604-2618, 2017 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-28118005

RESUMO

Electrocatalytic reduction of CO2 to CO is reported for the complex, {fac-MnI([(MeO)2Ph]2bpy)(CO)3(CH3CN)}(OTf), containing four pendant methoxy groups, where [(MeO)2Ph]2bpy = 6,6'-bis(2,6-dimethoxyphenyl)-2,2'-bipyridine. In addition to a steric influence similar to that previously established [Sampson, M. D. et al. J. Am. Chem. Soc. 2014, 136, 5460-5471] for the 6,6'-dimesityl-2,2'-bipyridine ligand in [fac-MnI(mes2bpy)(CO)3(CH3CN)](OTf), which prevents Mn0-Mn0 dimerization, the [(MeO)2Ph]2bpy ligand introduces an additional electronic influence combined with a weak allosteric hydrogen-bonding interaction that significantly lowers the activation barrier for C-OH bond cleavage from the metallocarboxylic acid intermediate. This provides access to the thus far elusive protonation-first pathway, minimizing the required overpotential for electrocatalytic CO2 to CO conversion by Mn(I) polypyridyl catalysts, while concurrently maintaining a respectable turnover frequency. Comprehensive electrochemical and computational studies here confirm the positive influence of the [(MeO)2Ph]2bpy ligand framework on electrocatalytic CO2 reduction and its dependence upon the concentration and pKa of the external Brønsted acid proton source (water, methanol, trifluoroethanol, and phenol) that is required for this class of manganese catalyst. Linear sweep voltammetry studies show that both phenol and trifluoroethanol as proton sources exhibit the largest protonation-first catalytic currents in combination with {fac-MnI([(MeO)2Ph]2bpy)(CO)3(CH3CN)}(OTf), saving up to 0.55 V in overpotential with respect to the thermodynamically demanding reduction-first pathway, while bulk electrolysis studies confirm a high product selectivity for CO formation. To gain further insight into catalyst activation, time-resolved infrared (TRIR) spectroscopy combined with pulse-radiolysis (PR-TRIR), infrared spectroelectrochemistry, and density functional theory calculations were used to establish the v(CO) stretching frequencies and energetics of key redox intermediates relevant to catalyst activation.

5.
Dalton Trans ; 45(39): 15285-15289, 2016 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-27711698

RESUMO

The electrochemical properties of two Ni(NNN)X2 pincer complexes are reported where X = Cl or Br and NNN is N,N'-(2,6-diisopropylphenyl)bis-aldiminopyridine. Cyclic voltammetry under 1 atm of CO2 suggests electrocatalytic CO2 reduction activity, however, bulk electrolysis shows a poor Faradaic efficiency for CO evolution with a high Faradaic yield for H2 evolution.

6.
Inorg Chem ; 55(5): 2460-72, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26886292

RESUMO

Electronic and photophysical characterization is presented for a series of bis-heteroleptic [Ru(bpy)2(R-CAQN)](+) complexes where CAQN is a bidentate N-(carboxyaryl)amidoquinolate ligand and the aryl substituent R = p-tolyl, p-fluorobenzene, p-trifluoromethylbenzene, 3,5-bis(trifluoromethyl)benzene, or 4-methoxy-2,3,5,6-tetrafluorobenzene. Characterized by a strong noninnocent Ru(dπ)-CAQN(π) bonding interaction, density functional theory (DFT) analysis is used to estimate the contribution of both atomic Ru(dπ) and ligand CAQN(π) manifolds to the frontier molecular orbitals of these complexes. UV-vis absorption and emission studies are presented where the noninnocent Ru(dπ)-CAQN(π) bonding scheme plays a major role in defining complex electronic and photophysical properties. Oxidation potentials are tuned over a range of 0.92 V with respect to the [Ru(bpy)3](2+) reference system, hereafter referred to as 1(2+), by varying the degree of R-CAQN fluorination while maintaining consistently strong and panchromatic visible absorption properties. Electron paramagnetic resonance (EPR) spectroscopy is employed to experimentally map delocalization of the unpaired electron/electron-hole within the delocalized Ru(dπ)-CAQN(π) singly occupied valence molecular orbital of the one-electron oxidized complexes. EPR data is complemented experimentally by UV-vis-NIR spectroelectrochemistry, and computationally by molecular orbital Mulliken contributions and spin-density analysis. It is ultimately demonstrated that the CAQN ligand framework provides a simple yet broad synthetic platform in the design of redox-active transition metal chromophores with a range of electronic and spectroscopic characteristics hinting at the diversity and potential of these complexes toward photochemical and catalytic applications.

7.
Faraday Discuss ; 185: 497-506, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26426503

RESUMO

The electronic properties of three porphyrin-bridge-anchor photosensitizers are reported with (1a, 1e, 3a and 3e) or without (2a and 2e) an intramolecular dipole in the bridge. The presence and orientation of the bridge dipole is hypothesized to influence the photovoltaic properties due to variations in the intrinsic dipole at the semiconductor-molecule interface. Electrochemical studies of the porphyrin-bridge-anchor dyes self-assembled on mesoporous nanoparticle ZrO2 films, show that the presence or direction of the bridge dipole does not have an observable effect on the electronic properties of the porphyrin ring. Subsequent photovoltaic measurements of nanostructured TiO2 semiconductor films in dye sensitized solar cells show a reduced photocurrent for photosensitizers 1a and 3a containing a bridge dipole. However, cooperative increased binding of the 1a + 3a co-sensitized device demonstrates that dye packing overrides any differences due to the presence of the small internal dipole.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...