Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 36(13): 2946-52, 2002 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-12144272

RESUMO

The natural association nature of the humic colloid-borne trace elements is investigated. Rare earth elements (REE) Th and U are chosen as naturally occurring representatives and chemical homologues for actinides of different oxidation states present in nuclear waste. Tri- and tetravalent elements in two investigated Gorleben groundwaters (Gohy-532 and -2227) almost exclusively occur as humic or fulvic colloid-borne species. Their desorption behavior from colloids is examined in the unperturbed groundwater (pH approximately 8) under anaerobic conditions (Ar/1% CO2) by addition of a chelating cation exchanger resin. Particularly, the dissociation process of naturally occurring Eu(III) in the groundwater is compared with the Eu(III) desorption from its humate complex prepared with purified Aldrich humic acid in a buffered aqueous solution at pH approximately 8. The Eu(III) dissociation from the groundwater colloids is found to be considerably slower than found for the humate complex synthesized in the laboratory. This suggests that under natural aquatic conditions the Eu(III) binding in colloids is chemically different from the simple humate complexation as observed in the laboratory experiment. The colloid characterization bythe size exclusion chromatography (SEC) and the flow field-flow fractionation (FFFF) indicates that natural colloid-borne trace elements are found predominantly in colloids of larger size (>15 nm in size), while Eu(III) in its humate complex is found mainly in colloids of hydrodynamic diameters <5 nm. The slower desorption kinetics and the larger colloid size suggest that the polyvalent metal ion binding in natural humic colloids is associated to polynucleation with other co-present trace metal ions. Radiotracer experiments reveal that isotopic equilibria with the naturally colloid-borne trace elements are not attained within a period of more than 100 days, indicating irreversible binding of at least a part of colloid-borne polyvalent trace elements. The different kinetic properties of colloid-bound Eu(III) are discussed taking the aqueous speciation based on thermodynamic data into account.


Assuntos
Metais Terras Raras/química , Poluentes da Água/análise , Cromatografia em Gel , Coloides/química , Isótopos , Cinética , Solubilidade , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...