Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Talanta ; 241: 123253, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35121539

RESUMO

Conductive composite fibers containing poly (3,4-ethylenedioxythiophene) (PEDOT) and silver nanoparticles (AgNPs) were fabricated by emulsion electrospinning of 2,5-dibromo-3,4-ethylenedioxythiophene (DBEDOT) in toluene together with aqueous solution of poly (vinyl alcohol) (PVA) and silver nanoparticles (AgNPs) in the presence of sodium dodecylsulfate followed by heat treatment at 70 °C to convert DBEDOT to conductive PEDOT via solid state polymerization (SSP). The composite fibers were characterized by scanning electron microscopy, transmission electron microscopy, x-ray photoelectron spectroscopy and thermogravimetric analysis. The PEDOT/PVA/AgNPs composite fibers deposited on a screen-printed carbon electrode (SPCE) surface exhibited good electrochemical response and was applied for simultaneous detection of heavy metal ions in a mixture, namely Zn(II), Cd(II), and Pb(II) via square wave anodic stripping voltammetry (SWASV). With added Bi+3 into the detection system, the bismuth film formed on the electrode allows effective alloy formation with the deposited heavy metals obtained upon reduction of the heavy metal ions, the detection of heavy metal ions after stripping was successfully accomplished with a linear range of 10-80 ppb and limits of detections (LOD) of 6, 3 and 8 ppb for Zn(II), Cd(II), and Pb(II), respectively.


Assuntos
Nanopartículas Metálicas , Compostos Bicíclicos Heterocíclicos com Pontes , Íons , Polimerização , Polímeros , Prata
2.
Carbohydr Polym ; 262: 117864, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33838790

RESUMO

Luminescent quantum dot (QD) ink is currently a powerful tool for generating hidden information on paper substrates. Herein, we fabricated a nanohybrid ink of bacterial cellulose nanocrystal (BCNC) and UV-responsive ZnO QD via electrostatic self-assembly for improving solvent resistance and message encryption process. Under investigations on the printed areas, the nanohybrid can slightly infiltrate into the paper fibers and form a thin layer on the top of paper substrates, conferring an enhanced print permanence against wetting conditions while maintaining the daylight unobservability and its luminescent stability. The water resistance of the proposed nanohybrid ink enables developing a higher security level that the prints can be submerged in CuCl2 aqueous solutions to quench the luminescent message. The concealed message can eventually be revealed under UV light again after submerging in EDTA solution. Our ZnO QD/BCNC nanohybrid with eco-friendly nature therefore exhibits great potential as security marking ink for counterfeit protection with sustainable uses.


Assuntos
Celulose/química , Tinta , Nanopartículas/química , Pontos Quânticos/química , Óxido de Zinco/química , Humanos , Luminescência , Nanocompostos/química , Papel , Impressão/métodos , Solventes , Raios Ultravioleta , Água
3.
Carbohydr Polym ; 235: 115956, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32122492

RESUMO

This study aimed to develop an eco-friendly flexible surface-enhanced Raman scattering (SERS) substrate for in-situ detection of pesticides using biodegradable bacterial nanocellulose (BNC). Plasmonic silver nanoparticle- bacterial nanocellulose paper (AgNP-BNCP) composites were prepared by vacuum-assisted filtration. After loading AgNPs into BNC hydrogel, AgNPs were trapped firmly in the network of nanofibrous BNCP upon ambient drying process, resulting in 3D SERS hotspots within a few-micron depth on the substrate. The fabricated AgNP-BNCPs exhibited high SERS activity with good reproducibility and stability as demonstrated by the detection of 4-aminothiophenol and methomyl pesticide. Due to the optical transparency of BNCP, a direct and rapid detection of methomyl on fruit peels using AgNP-BNCPs can be achieved, demonstrating a simple and effective 'paste-and-read' SERS approach. These results demonstrate potential of AgNP-BNCP composites for user-friendly in-situ SERS analysis.


Assuntos
Acetobacter/química , Celulose/química , Contaminação de Alimentos/análise , Frutas/química , Nanocompostos/química , Papel , Praguicidas/análise , Nanopartículas Metálicas/química , Tamanho da Partícula , Prata/química , Análise Espectral Raman , Propriedades de Superfície
4.
Analyst ; 139(22): 5740-6, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25262699

RESUMO

We have described a highly sensitive method for detecting DNA hybridisation using a redox-labeled stem loop probe. The redox labels were poly(styrene-co-acrylic) (PSA) spheres of 454 nm diameter, modified by methylene blue (MB) deposited alternatively with poly(sodium 4-styrene sulphonate) (PSS) in a layer-by-layer process. Each PSA sphere carried approx. 3.7 × 10(5) molecules of MB, as determined optically. DIG-tagged stem loop probes were immobilised on screen printed electrodes bearing anti-DIG antibodies. Binding with the target enabled straightening of the stem loop, which made attachment to the MB-coated PSA spheres possible. For measuring the current from the direct reduction of MB by differential pulse voltammetry, a 30 mer DNA target common to 70 strains of Escherichia coli was calibrated across the range 1.0 fM to 100 pM (gradient = 3.2 × 10(-8) A (log fM)(-1), r(2) = 0.95, n = 60), with an LOD of ∼58 fM. By using Fe(CN)6(3-/4-) as a solution phase mediator for the MB reduction, we were able to lower the LOD to ∼39 aM (gradient = 5.95 × 10(-8) A (log aM)(-1), r(2) = 0.96, n = 30), which corresponds to the detection of 0.76 ag (∼50 molecules) in the 2 µL analyte sample. We hypothesise that the lowering of the LOD was due to the fact that not all the MB labels were able to contact the electrode surface.


Assuntos
DNA Bacteriano/química , Técnicas Eletroquímicas/normas , Eletrodos , Hibridização de Ácido Nucleico , Sequência de Bases , Calibragem , Escherichia coli/genética , Limite de Detecção , Oxirredução , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...