Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38808657

RESUMO

Chilling stress threatens plant growth and development, particularly affecting membrane fluidity and cellular integrity. Understanding plant membrane responses to chilling stress is important for unraveling the molecular mechanisms of stress tolerance. Whereas core transcriptional responses to chilling stress and stress tolerance are conserved across species, the associated changes in membrane lipids appear to be less conserved, as which lipids are affected by chilling stress varies by species. Here, we investigated changes in gene expression and membrane lipids in response to chilling stress during one 24 hour cycle in chilling-tolerant foxtail millet (Setaria italica), and chilling-sensitive sorghum (Sorghum bicolor), and Urochloa (browntop signal grass, Urochloa fusca, lipids only), leveraging their evolutionary relatedness and differing levels of chilling-stress tolerance. We show that most chilling-induced lipid changes are conserved across the three species, while we observed distinct, time-specific responses in chilling-tolerant foxtail millet, indicating the presence of a finely orchestrated adaptive mechanism. We detected rhythmicity in lipid responses to chilling stress in the three grasses, which were also present in Arabidopsis (Arabidopsis thaliana), suggesting the conservation of rhythmic patterns across species and highlighting the importance of accounting for time of day. When integrating lipid datasets with gene expression profiles, we identified potential candidate genes that showed corresponding transcriptional changes in response to chilling stress, providing insights into the differences in regulatory mechanisms between chilling-sensitive sorghum and chilling-tolerant foxtail millet.

2.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33658387

RESUMO

Although genome-sequence assemblies are available for a growing number of plant species, gene-expression responses to stimuli have been cataloged for only a subset of these species. Many genes show altered transcription patterns in response to abiotic stresses. However, orthologous genes in related species often exhibit different responses to a given stress. Accordingly, data on the regulation of gene expression in one species are not reliable predictors of orthologous gene responses in a related species. Here, we trained a supervised classification model to identify genes that transcriptionally respond to cold stress. A model trained with only features calculated directly from genome assemblies exhibited only modest decreases in performance relative to models trained by using genomic, chromatin, and evolution/diversity features. Models trained with data from one species successfully predicted which genes would respond to cold stress in other related species. Cross-species predictions remained accurate when training was performed in cold-sensitive species and predictions were performed in cold-tolerant species and vice versa. Models trained with data on gene expression in multiple species provided at least equivalent performance to models trained and tested in a single species and outperformed single-species models in cross-species prediction. These results suggest that classifiers trained on stress data from well-studied species may suffice for predicting gene-expression patterns in related, less-studied species with sequenced genomes.


Assuntos
Resposta ao Choque Frio , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Modelos Genéticos , Poaceae , Transcrição Gênica , Poaceae/genética , Poaceae/metabolismo , Especificidade da Espécie
3.
G3 (Bethesda) ; 8(7): 2513-2522, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29794163

RESUMO

Pearl millet is a non-model grain and fodder crop adapted to extremely hot and dry environments globally. In India, a great deal of public and private sectors' investment has focused on developing pearl millet single cross hybrids based on the cytoplasmic-genetic male sterility (CMS) system, while in Africa most pearl millet production relies on open pollinated varieties. Pearl millet lines were phenotyped for both the inbred parents and hybrids stage. Many breeding efforts focus on phenotypic selection of inbred parents to generate improved parental lines and hybrids. This study evaluated two genotyping techniques and four genomic selection schemes in pearl millet. Despite the fact that 6× more sequencing data were generated per sample for RAD-seq than for tGBS, tGBS yielded more than 2× as many informative SNPs (defined as those having MAF > 0.05) than RAD-seq. A genomic prediction scheme utilizing only data from hybrids generated prediction accuracies (median) ranging from 0.73-0.74 (1000-grain weight), 0.87-0.89 (days to flowering time), 0.48-0.51 (grain yield) and 0.72-0.73 (plant height). For traits with little to no heterosis, hybrid only and hybrid/inbred prediction schemes performed almost equivalently. For traits with significant mid-parent heterosis, the direct inclusion of phenotypic data from inbred lines significantly (P < 0.05) reduced prediction accuracy when all lines were analyzed together. However, when inbreds and hybrid trait values were both scored relative to the mean trait values for the respective populations, the inclusion of inbred phenotypic datasets moderately improved genomic predictions of the hybrid genomic estimated breeding values. Here we show that modern approaches to genotyping by sequencing can enable genomic selection in pearl millet. While historical pearl millet breeding records include a wealth of phenotypic data from inbred lines, we demonstrate that the naive incorporation of this data into a hybrid breeding program can reduce prediction accuracy, while controlling for the effects of heterosis per se allowed inbred genotype and trait data to improve the accuracy of genomic estimated breeding values for pearl millet hybrids.


Assuntos
Genoma de Planta , Genômica , Endogamia , Pennisetum/genética , Fenótipo , Algoritmos , Genômica/métodos , Genótipo , Hibridização Genética , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes , Seleção Genética
4.
Plant Cell ; 29(8): 1938-1951, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28733421

RESUMO

Identifying interspecies changes in gene regulation, one of the two primary sources of phenotypic variation, is challenging on a genome-wide scale. The use of paired time-course data on cold-responsive gene expression in maize (Zea mays) and sorghum (Sorghum bicolor) allowed us to identify differentially regulated orthologs. While the majority of cold-responsive transcriptional regulation of conserved gene pairs is species specific, the initial transcriptional responses to cold appear to be more conserved than later responses. In maize, the promoters of genes with conserved transcriptional responses to cold tend to contain more micrococcal nuclease hypersensitive sites in their promoters, a proxy for open chromatin. Genes with conserved patterns of transcriptional regulation between the two species show lower ratios of nonsynonymous to synonymous substitutions. Genes involved in lipid metabolism, known to be involved in cold acclimation, tended to show consistent regulation in both species. Genes with species-specific cold responses did not cluster in particular pathways nor were they enriched in particular functional categories. We propose that cold-responsive transcriptional regulation in individual species may not be a reliable marker for function, while a core set of genes involved in perceiving and responding to cold stress are subject to functionally constrained cold-responsive regulation across the grass tribe Andropogoneae.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Proteínas de Plantas/genética , Homologia de Sequência de Aminoácidos , Sorghum/genética , Zea mays/genética , Cromatina/metabolismo , Genes de Plantas , Filogenia , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA