Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 662: 653-662, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38367582

RESUMO

HYPOTHESIS: The adsorption of heavy metal ions such as Pb(II) onto negatively charged minerals such as silica is expected to alter the structure and the interactions at the silica/aqueous interfaces. Besides the solution pH, the inner-sphere sorption of Pb(II) is expected to regulate the surface charge/potential, hypothesized to control the actions of monovalent anions in the aqueous environment. These complex pictures can be probed directly using surface-sensitive sum-frequency generation (SFG) spectroscopy. EXPERIMENTS: The pH-dependent water structure within the double layer at silica/aqueous interfaces under the influence of different ions was examined using SFG. The recorded SFG spectra were deconvoluted into the Stern layer (SL) and diffuse layer (DL) using the maximum entropy method in conjunction with the electrical double-layer theory. FINDINGS: Standalone monovalent sodium salts do not exhibit ion-specific effects on the silica/aqueous interfaces. However, the mixture of Pb(II) species and each of these salts display profound ion-specific effects on the structure of silica/aqueous interfaces, indicating the role of Pb(II) as an enabler of the ion-specificity of the investigated monovalent anions. The interesting effect arises from a complex interplay between the physical processes (i.e., electrostatic interactions, screening effects, etc.) and chemical processes such as the hydrolysis of Pb(II) ions, ion complexation, protonation and deprotonation of the surface silanol group.

2.
Water Res ; 253: 121300, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38367385

RESUMO

Landfills are the primary endpoint for the disposal of PFAS-laden waste, which subsequently releases PFAS to the surrounding environments through landfill leachate. Ozone foam fractionation emerges as a promising technology for PFAS removal to address the issue. This study aims to (i) assess the effectiveness of the ozone foam fractionation system to remove PFAS from landfill leachate, and (ii) quantify equilibrium PFAS adsorption onto the gas-water interface of ozone bubbles, followed by a comparison with air foam fractionation. The results show that ozone foam fractionation is effective for PFAS removal from landfill leachate, with more than 90 % long-chain PFAS removed. The identified operating conditions provide valuable insights for industrial applications, guiding the optimization of ozone flow rates (1 L/min), dosing (43 mg/L) and minimizing foamate production (4 % wettability). The equilibrium modelling reveals that the surface excess of air bubbles exceeds that of ozone bubbles by 20-40 % at a corresponding PFAS concentration. However, the overall removal of PFAS from landfill leachate by ozone foam fractionation remains substantial. Notably, ozone foam fractionation generates foamate volumes 2 - 4 times less, resulting in significant cost savings for the final disposal of waste products and reduced site storage requirements.


Assuntos
Fluorocarbonos , Ozônio , Eliminação de Resíduos , Poluentes Químicos da Água , Eliminação de Resíduos/métodos , Poluentes Químicos da Água/análise , Adsorção , Instalações de Eliminação de Resíduos
3.
Chemphyschem ; 24(23): e202300062, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37679310

RESUMO

Surfactants are used to control the macroscopic properties of the air-water interface. However, the link between the surfactant molecular structure and the macroscopic properties remains unclear. Using sum-frequency generation spectroscopy and molecular dynamics simulations, two ionic surfactants (dodecyl trimethylammonium bromide, DTAB, and sodium dodecyl sulphate, SDS) with the same carbon chain lengths and charge magnitude (but different signs) of head groups interact and reorient interfacial water molecules differently. DTAB forms a thicker but sparser interfacial layer than SDS. It is due to the deep penetration into the adsorption zone of Br- counterions compared to smaller Na+ ones, and also due to the flip-flop orientation of water molecules. SDS alters two distinctive interfacial water layers into a layer where H+ points to the air, forming strong hydrogen bonding with the sulphate headgroup. In contrast, only weaker dipole-dipole interactions with the DTAB headgroup are formed as they reorient water molecules with H+ point down to the aqueous phase. Hence, with more molecules adsorbed at the interface, SDS builds up a higher interfacial pressure than DTAB, producing lower surface tension and higher foam stability at a similar bulk concentration. Our findings offer improved knowledge for understanding various processes in the industry and nature.

4.
J Environ Manage ; 344: 118488, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37393870

RESUMO

Mineral tailings dams pose high pollution risks to the environment and catastrophic failures. Dry stacking has been identified as a promising alternative to mitigate these risks and offers various benefits to the mining industry but lacks systematic research outcomes. To facilitate dry stacking, coal tailings slurries were dewatered using either filtration or centrifugation methods, resulting in a semi-solid form (cake) that can be safely disposed of. The handleability and disposability of these cakes are greatly influenced by the selection of chemical aids (such as polymer flocculants) and the mechanical dewatering technique employed. The effects of polyacrylamide (PAM) flocculants with a range of molecular weight, charge, and charge density are presented. Coal tailings samples with differences in clay mineralogy were dewatered using press filtration, solid bowl centrifugation, and natural air drying. Handleability and disposability of the tailings were assessed by their rheological properties, including yield stress, adhesive and cohesive stresses, and stickiness. Residue moisture, type of polymer flocculants, and clay mineralogy were found to be crucial factors affecting the handleability and disposability of the dewatered cakes. The tailing yield stress (shear strength) increased as the solid concentration increased. In the semi-solid regime (above 60 wt% solids), the tailings displayed stiff exponential growth. Similar trends were observed for stickiness and adhesive/cohesive energy of the tailings with a steel (truck) surface. Adding polymer flocculants increased the shear strength of the dewatered tailings by 10-15%, thus favouring disposability. However, the polymer selection for coal tailing handling and processing is a trade-off between its disposability and handleability, which requires a multi-criteria decision-making process. The current results also suggested that cationic PAM could be most suitable for dewatering by press filtration, while anionic PAM should be selected for dewatering by solid bowl centrifugation.


Assuntos
Carvão Mineral , Polímeros , Argila , Resistência ao Cisalhamento , Poluição Ambiental
5.
J Colloid Interface Sci ; 647: 152-162, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37247479

RESUMO

HYPOTHESIS: Adsorption of divalent heavy metal ions (DHMIs) at the mineral-water interfaces changes interfacial chemical species and charges, interfacial water structure, Stern (SL), and diffuse (DL) layers. These molecular changes can be detected by probing changing orientation and hydrogen-bond network of interfacial water molecules in response to changing local charges and hydrophobicity. EXPERIMENTS: Sum-frequency generation (SFG) spectroscopy was used to probe changes in vibrational resonances of interfacial OH vs. DHMI concentration and pH. SFG spectra were deconvoluted using the measured surface potential and maximum entropy method in conjunction with the electrical double-layer theory for the SL and DL structures and correlated by hydrophobicity. FINDINGS: Three surface charge reversals (CRs) were detected at low (CR1), medium (CR2), and high (CR3) pHs. Unlike CR1, SFG signals were minimized at CR2 and CR3 for DHMIs-silica systems highlighting considerable alterations in the structure of interfacial waters due to the inner-sphere sorption of metal hydroxo complexes. SFG results showed "hydrophobic-like" stretching modes at > 3600 cm-1 for Pb-, Cu-, and Zn-treated silica. However, contact angle measurements revealed the hydrophobization of silica only in the presence of Pb(II), as confirmed by an in-depth SFG analysis of the hydrogen-bond network of the interfacial water molecules in the SL.

6.
J Colloid Interface Sci ; 636: 413-424, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36640552

RESUMO

HYPOTHESIS: Flotation of water-soluble KCl and NaCl minerals in brines is significant for K-fertilizer production, but its mechanism is controversial. Dissolved salt ions are expected to change the physicochemical properties of solvents, interfaces, and collector colloids, thereby affecting flotation significantly. EXPERIMENTS: Flotation experiments of KCl and NaCl crystals in brines were conducted using potassium and sodium laurates as collectors. Contact angle (CA) and surface tension measurements, X-ray photoelectron spectroscopy (XPS) analysis, and molecular dynamics simulations (MD) were applied to gain a molecular understanding of changing interfacial properties and crystal-collector colloid interactions in the presence of dissolved ions in terms of salt flotation. FINDINGS: While K+ ions activate the NaCl crystal flotation, Na+ ions depress the KCl crystal flotation, in agreement with the studies of CA, XPS, and MD results with these crystals. XPS results showed no collector adsorption at crystal surfaces which is a requirement of conventional flotation and presents a new theoretical challenge. We argue the crucial role of ion specificity: Na-laurate colloids adsorb at the bubble surface as a monolayer but solvent-separated from KCl crystals, inhibiting their flotation, or in interactive contact with NaCl crystals, enhancing their flotation. Increasing K+ concentration weakens NaCl crystal hydration, increasing Na-laurate colloid attraction with crystals for better flotation. The Contact Interactive Collector Colloid (CICC) and Solvent-separated Interactive Collector Colloid (SICC) hydration states are critical to salt crystal flotation via collector colloid-crystal attraction by dispersion forces.

7.
Adv Colloid Interface Sci ; 309: 102775, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36152375

RESUMO

The flotation separation of water-soluble salt minerals has to be conducted under the condition of saturation in brines which represents a challenging but exciting topic of colloid and surface chemistry. Despite several proposals on explaining the success of this industrial application for many decades, our understanding of the flotation separation is still far from complete yet, owing to the complexity of the highly selective collection of salt crystals by air bubbles in brines. Here, we thoroughly review the experimental results for halogen, oxyanion, and double salts and match them with the proposed theories on the flotation of soluble salts to identify the agreed and disagreed cases. The experimental results show that the flotation of these salts varies from collectors (surfactants applied to control the crystal hydrophobicity) to collectors and is strongly affected by the brine ion composition and pH conditions. We find some exceptional flotation results that cannot be simply explained by the crystal surface charge and wettability. Furthermore, we outline several disputes and discrepancies between the experiments and the theories when different collectors are applied. Apart from the extensive consideration of surface hydration, the presence of external ion species exhibits ubiquitous effects on the surface properties of salt crystals and the colloidal properties of collectors. We conclude that the interactions between salt ions, water molecules, collectors, and salt crystals must be considered more thoroughly, and the activity of collectors at the air-liquid interface should also be the focus. Advanced techniques such as molecular dynamics simulation, atomic force microscopy, X-ray photoelectron spectroscopy, and sum-frequency generation spectroscopy are expected to be promising research tools for future studies.


Assuntos
Minerais , Sais , Minerais/química , Tensoativos , Íons , Coloides , Água , Halogênios
8.
ACS Nano ; 16(8): 11504-11515, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35939085

RESUMO

Hydrogen and methane can be molecularly incorporated in ice-like water structures up to mass fractions of 4.3% and 13.3%, respectively. The resulting solid structures, called gas hydrates, offer great potential for the efficient storage of hydrogen and natural gas. However, slow gas encapsulation by bulk water hinders this application. Porous structures have been shown to effectively promote gas hydrate formation and are a potential enabler for the development of hydrate-based gas storage technologies. Here, we offer an insightful perspective on using porous structures as nanoreactors for achieving fast gas hydrate formation for gas storage applications. We critically discuss and elucidate the working mechanisms of nanoreactors and identify the criteria for efficient nanoreactors. Based on the concepts founded, we propose a theoretical framework for designing next-generation porous materials for delivering better promoting effects on gas hydrate formation.

9.
Adv Colloid Interface Sci ; 307: 102731, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35917769

RESUMO

Particle-laden interfaces are critical to the flotation separation of hydrophobic particles using air bubbles. After contacting the particle suspension, the bubble surface is loaded with many hydrophobic particles that can get detached during the bubble rise to the top. While many studies of the capillary stability and detachment of single particles from the clean air-water interface have provided significant insights, the particle floatability, detachment, and stability of the particle-laden interface are not well quantified. This paper provides a critical review of the experimental and theoretical investigations of the lateral capillary interactions on the particle floatability and stability of the particle-laden interfaces. Particularly, we critically analysed, summarized, and commented on asymptotic solutions of the Young-Laplace equation for various particle configurations. Then, we critically assessed the outcomes of both the theoretical and experimental studies of the particle-laden interface stability and related the results to particle-bubble detachment behaviours in flotation applications. This review provides an updated outlook of research perspectives that establish the framework for researchers interested in this fascinating field of flotation and colloid and surface science.

10.
J Phys Chem B ; 126(5): 1063-1075, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35103476

RESUMO

Surfactant adsorption at the air-water interface is critical to many industrial processes but its dependence on salt ions is still poorly understood. Here, we investigate the adsorption of sodium dodecanoate onto the air-water interface using model saline waters of Li+ or Cs+ at pH values 8 and 11. Both cations enhance the surfactant adsorption, as expected, but their largest effects on the adsorption also depend on pH. Specifically, surface tension measurements, sum-frequency generation spectroscopy, and microelectrophoresis show that small (hard) Li+ enhances the surfactant adsorption more than large (soft) Cs+ at pH 11. This effect is fully reversed at pH 8. We argue that this salting-up (increasing adsorption) reversal is attributable to the conversion of the neutralized carboxylic (-COOH) headgroup at pH 8 into the charged carboxylate (-COO-) headgroup at pH 11, which, respectively, interact with Cs+ and Li+ favorably. Molecular dynamics simulation shows that the affinity of Cs+ to the interface is decreased and eventually overtaken by Li+ as the carboxylic groups are deprotonated. This study highlights the importance of the charge and size of salt ions in selecting surfactants and electrolytes for industrial applications.


Assuntos
Simulação de Dinâmica Molecular , Tensoativos , Adsorção , Cátions , Águas Salinas , Tensão Superficial , Tensoativos/química
11.
Int J Health Plann Manage ; 37(1): 156-170, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34490656

RESUMO

INTRODUCTION: Emergency departments (EDs) at public hospitals in Vietnam typically face problems with overcrowding, as well as being populated by a wide variety of illnesses, resulting in increasing dissatisfaction from patients. To alleviate these problems, we used the increasingly popular value-stream mapping (VSM) and lean strategy approaches to (1) evaluate the current patient flow in EDs; (2) identify and eliminate the non-valued-added components; and (3) modify the existing process in order to improve waiting times. METHODS: Data from a total of 742 patients who presented at the ED of 108 Military Central Hospital in Hanoi, Vietnam, were collected. A VSM was developed where improvement possibilities were identified and attempts to eliminate non-value-added activities were made. A range of issues that were considered as a resource waste were highlighted, which led to a re-design process focusing on prioritizing blood tests and ultrasound procedures. On the administrative side, various measures were considered, including streamlining communication with medical departments, using QR codes for healthcare insurance payments, and efficient management of X-ray and CT scan online results. RESULTS: By implementing a lean approach, the following reductions in delay and waiting time were incurred: (1) pre-operative test results (for patients requiring medical procedures/operations) by 33.3% (from 134.4 to 89.4 min); (2) vascular interventions by 10.4% (from 54.6 to 48.9 min); and (3) admission to other hospital departments by 49.5% (from 118.3 to 59.8 min). Additionally, prior to the implementation of the lean strategy approach, only 22.9% of patients or their proxies (family members or friends), who responded to the survey, expressed satisfaction with the ED services. This percentage increased to 76.5% following the curtailment of non-value-added activities. Through statistical inferential test analyses, it can be confidently concluded that applying lean strategy and tools can improve patient flow in public/general hospital EDs and achieve better staff coordination within the various clinical and administrative hospital departments. To the authors' knowledge, such analysis in a Vietnamese hospital's ED context has not been previously undertaken.


Assuntos
Hospitais Gerais , Listas de Espera , Povo Asiático , Serviço Hospitalar de Emergência , Hospitais Públicos , Humanos
12.
Soft Matter ; 17(15): 4069-4076, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33725064

RESUMO

A liquid marble (LM) is a droplet coated with microparticles that isolate the liquid interior from its surroundings, making it perfectly non-wetting. This attractive feature allows the LM to perform useful tasks such as coalescence, targeted delivery, and controlled release. The non-wetting characteristic also allows the LM to float on a carrier liquid. The growing number of applications in digital microfluidics requires further insights into the fundamental properties of a LM such as its effective surface tension. Although the coating provides the LM with various desirable characteristics, its random construction presents a major obstacle to accurate optical analysis. This paper presents a novel method to measure the effective surface tension of a floating LM using X-ray imaging and curve fitting procedures. X-ray imaging reveals the true LM liquid-air interface hidden by the coating particles. Analysis of this interface showed that the effective surface tension of a LM is not significantly different from that of its liquid content. This indicates that the particle coating might not have significantly altered the behaviour of the liquid interface. We also found that our method is sensitive enough to detect the variations across individual LMs.

13.
Langmuir ; 37(7): 2237-2255, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33559472

RESUMO

Surfactants are centrally important in many scientific and engineering fields and are used for many purposes such as foaming agents and detergents. However, many challenges remain in providing a comprehensive understanding of their behavior. Here, we provide a brief historical overview of the study of surfactant adsorption at the air-water interface, followed by a discussion of some recent advances in this area from our group. The main focus is on incorporating an accurate description of the adsorption layer thickness of surfactant at the air-water interface. Surfactants have a wide distribution at the air-water interface, which can have a significant effect on important properties such as the surface excess, surface tension, and surface potential. We have developed a modified Poisson-Boltzmann (MPB) model to describe this effect, which we outline here. We also address the remaining challenges and future research directions in this area. We believe that experimental techniques, modeling, and simulation should be combined to form a holistic picture of surfactant adsorption at the air-water interface.

14.
Langmuir ; 37(2): 616-626, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-32031822

RESUMO

The attachment of air bubbles to solid surfaces in water is encountered in many natural processes and industrial applications. It has been established that the attachment can occur between hydrophobic surfaces and air bubbles. In this paper, we present novel experimental results to quantify the attachment in terms of the attachment time. We show that the attachment time can be determined from either the transient force curve or the transient film thickness. These techniques for determining the attachment time are based on the fact that the rupture of a thin liquid film produces a large attachment force and a rapid expansion of the three-phase contact radius in comparison with the expansion of the film radius. The experimental results are quantitatively analyzed using thin-film drainage theory and intermolecular forces, which include the advanced multilayer van der Waals force and the electrical double-layer force. The advanced van der Waals force theory allows us to incorporate the effect of interfacial gas enrichment (IGE) of dissolved gas in water at hydrophobic surfaces on the bubble-surface attachment. Critically, if the presence of IGE is ignored, the experimental results do not agree with the theory. Finally, IGE is shown to be a significant factor in controlling hydrophobic attraction between an air bubble and a hydrophobic surface and their attachment.

15.
Langmuir ; 36(43): 13012-13022, 2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33084333

RESUMO

Ionic surfactants behave differently in the presence of various counterions, which plays an important role in many scientific and engineering processes. Previous work has shown that the counterion-specific surface tension can be reproduced with classical adsorption models, but the underlying origin of this effect has not been explained. In this paper, we extend our previously developed adsorption model to account for the specific counterion adsorption. This model can accurately predict the surface tension of surfactant solutions like sodium dodecyl sulfate (SDS) in the presence of the monovalent salts LiCl, NaCl, KCl, and CsCl. The predicted surface excess and surface potential are validated by corresponding sum-frequency generation (SFG) spectroscopy experiments. We also used molecular dynamic (MD) simulation to explain the origin of the counterion-specific effect for surfactant behavior. Our study shows that for SDS, binding of the counterion to both the headgroup and a few CH2 fragments close to the surfactant head contributes to the counterion-specific effect. In general, SDS behaves like a large ion, and it prefers to bind with large counterions such as Cs+, which is consistent with Collins's law of matching water affinity. Therefore, large counterions enhance the surface adsorption and lower the surface tension the most.

16.
Langmuir ; 36(34): 9987-9992, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32787046

RESUMO

The short-range attractive forces between hydrophobic surfaces are key factors in a wide range of areas such as protein folding, lipid self-assembly, and particle-bubble interaction such as in industrial flotation. Little is certain about the effect of dissolved (well-controlled) gases on the interaction forces, in particular in those systems where the formation of surface nanobubble bridges is suppressed. Here, we probe the short-range attractive force between hydrophobized silica surfaces in aqueous solutions with varying but well-controlled isotherms of gas solubility. The first contact approach force measurement method using AFM shows that decreasing gas solubility results in a decrease of the force magnitude as well as shortening of its range. The behavior was found to be consistent across all four aqueous systems and gas solubilities tested. Using numerical computations, we corroborate that attractive force can be adequately explained by a multilayer dispersion force model, which accounts for an interfacial gas enrichment (IGE), that results in the formation of a dense gas layer (DGL) adjacent to the hydrophobic surface. We found that the DGL on the hydrophobic surface is affected only by the concentration of dissolved gases and is independent of the salt type, used to control the gas solubility, which excludes the effect of electrical double-layer interactions on the hydrophobic force.

17.
J Hazard Mater ; 400: 123210, 2020 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-32590131

RESUMO

Over 150 million tons of high-alkaline bauxite residue was produced during the Bayer process of Bauxite smelting in the world annually, causing massive encroachment and irreversible pollution of soil. In this work, we proposed a new way out of bauxite residue, synthesizing a micro-electrolysis composite material (MECM) by carbothermal reduction of the bauxite residue towards the degradation of high-concentration organic wastewater. Batch experiments of organic compounds degradation were conducted to evaluate the performance of MECM with or without synergistic Fenton process. XRD and SEM-EDS analysis results indicated that a proper calcination temperature (1000℃) could facilitate the generation and growth of zero-valent iron (ZVI), thereby forming a large number of galvanic cells with carbon, which could efficiently break the azo bonds. Additionally, the micro-electrolysis reaction of MECM could provide lots of Fe(Ⅱ), which constituted the Fenton system with the additional H2O2. In Fenton system, the aromatic rings and alkyl chains were further degraded and mineralized, which reduced the chemical oxygen demand (COD) of methyl orange (MO) from 450 to 54 mg/L. Therefore, the combination of the micro-electrolysis and Fenton process provides a clean and efficient method for the treatment of organic wastewater, which is a promising way out for bauxite residue.

18.
J Phys Chem B ; 124(25): 5301-5310, 2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32453955

RESUMO

Foam films formed at the air-water interface do not have fixed adsorption sites where adsorbed surfactants can arrange themselves, resulting in the formation of thick adsorption layers. Current theories of equilibrium foam films fail to account for this feature and significantly underestimate the adsorption layer thickness. Here we show that this thickness has a significant effect on the disjoining pressure in foam films. If ignored, the theory predicts unphysical electrostatic potential profiles, which underestimate the disjoining pressure. We apply a previously developed adsorption model that incorporates a realistic thickness for the adsorption layer. This new model reproduces experimental measurements of the disjoining pressure of foam films very well over a wide surfactant concentration range without fitting parameters. Our work shows that a thick adsorption layer is less effectively screened by counterions, resulting in a higher electrostatic potential inside the film and therefore a higher disjoining pressure.

19.
J Phys Chem B ; 124(15): 3195-3205, 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32077295

RESUMO

Soluble surfactants form thick adsorption layers at the air-liquid interface, but classical adsorption models fail to account for it as they treat the adsorption layer as a mathematical plane (of zero thickness). This simplification has produced several inconsistencies between theoretical predictions and experimental results, especially for the surface potential. Here, we develop a new adsorption model for ionic surfactants at the air-water interface that incorporates the effect of the adsorption layer thickness using a modified Poisson-Boltzmann equation that integrates information from molecular dynamics simulation. We show that the surface potential depends sensitively on both the thickness of the adsorption layer and the interfacial depth at which the surface potential is probed. This model, therefore, provides a much more accurate picture of the surface potential than classical models.

20.
J Colloid Interface Sci ; 565: 345-350, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31981843

RESUMO

HYPOTHESIS: Bubble attachment to hydrophobic solid surfaces is influenced by the liquid film instability. Inclusion of transiently formed holes within the film rather than the so-called hydrophobic force in the theory is expected to better describe and explain film rupture and triple contact line formation in the bubble-surface attachment process. The significance of surface hydrophobicity and hole formation renders the stochastic nature of the induction time of attachment. EXPERIMENTS: A combination of high-speed video microscopy and theoretical analysis was applied to investigate the induction time of attachment and critical film thickness of air bubbles rising freely perpendicularly to silica surfaces of different hydrophobicities. FINDINGS: Film rupture occurred statistically for shorter induction times and thicker films on the more hydrophobic surface, rejecting the conjecture of hydrophobic force. Computed results of the critical base radius of the transient holes causing film rupture were merged together nicely, independently of surface hydrophobicity. The paper sheds light on the significance of hydrophobicity on the attachment process by means of a novel and easily implemented methodology, without relying on the debatable hydrophobic force.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...