Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PNAS Nexus ; 3(1): pgad428, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38234583

RESUMO

There has been a recent surge of interest in UTe2 due to its unconventional magnetic field (H)-reinforced spin-triplet superconducting phases persisting at fields far above the simple Pauli limit for H∥[010]. Magnetic fields in excess of 35 T then induce a field-polarized magnetic state via a first-order-like phase transition. More controversially, for field orientations close to H∥[011] and above 40 T, electrical resistivity measurements suggest that a further superconducting state may exist. However, no Meissner effect or thermodynamic evidence exists to date for this phase making it difficult to exclude alternative scenarios. In this paper, we describe a study using thermal, electrical, and magnetic probes in magnetic fields of up to 55 T applied between the [010] (b) and [001] (c) directions. Our MHz conductivity data reveal the field-induced state of low or vanishing electrical resistance; our simultaneous magnetocaloric effect measurements (i.e. changes in sample temperature due to changing magnetic field) show the first definitive evidence for adiabaticity and thermal behavior characteristic of bulk field-induced superconductivity.

2.
Rev Sci Instrum ; 92(2): 023903, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33648055

RESUMO

Extreme pressures and high magnetic fields can affect materials in profound and fascinating ways. However, large pressures and fields are often mutually incompatible; the rapidly changing fields provided by pulsed magnets induce eddy currents in the metallic components used in conventional pressure cells, causing serious heating, forces, and vibration. Here, we report a diamond-anvil-cell made mainly out of insulating composites that minimizes inductive heating while retaining sufficient strength to apply pressures of up to 8 GPa. Any residual metallic component is made of low-conductivity metals and patterned to reduce eddy currents. The simple design enables rapid sample or pressure changes, desired by pulsed-magnetic-field-facility users. The pressure cell has been used in pulsed magnetic fields of up to 65 T with no noticeable heating at cryogenic temperatures. Several measurement techniques are possible inside the cell at temperatures as low as 500 mK.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...