Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(5)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35269241

RESUMO

This work presents a novel approach to synthesizing magnetic core-shell nanocomposites, consisting of magnetic nanoparticles and a metal-organic framework, for environmental applications. The synthesis is based on the encapsulation of magnetic Fe3O4 nanoparticles with microporous zeolitic imidazolate framework-8 (ZIF-8) nanocrystals via ultrasonic activation under a continuous supply of precursor solutions. This sonochemical approach is proven to be a fast, cost-effective, and controllable route for the preparation of magnet-responsive Fe3O4@ZIF-8 nanoparticles with a core-shell structure. The functional nanomaterial possesses a high content of ZIF-8 and combined micro/mesoporosity, and thus can be used as adsorbents that can be easily separated using a magnet. In particular, the sonochemically prepared Fe3O4@ZIF-8 exhibits significant adsorption performance for the removal of copper ions from water: a short adsorption time (10 min), high maximum uptake capacity (345 mg g-1), and excellent removal efficiency (95.3%). These performances are interpreted and discussed based on the materials characteristics of Fe3O4@ZIF-8 established by microscopy, gas sorption, X-ray diffraction, and thermal analysis.

2.
Nanomaterials (Basel) ; 11(2)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540534

RESUMO

Naturally abundant vermiculite clay was expanded by using an aqueous solution of H2O2 and its surface was modified with ultra-thin polydimethylsiloxane (PDMS) using facile thermal vapor deposition to prepare an ecologically friendly, low-cost oil sorbent that plays an important role in oil spillage remediation. The resulting PDMS-coated expanded vermiculite (eVMT@PDMS) particles exhibited adequate hydrophobicity and oleophilicity for oil/water separation, with numerous conical slit pores (a size of 0.1-100 µm) providing a great sorption capacity and an efficient capillarity-driven flow pathway for oil collection. Simply with using a physically-packed eVMT@PDMS tube (or pouch), selective oil removals were demonstrated above and beneath the surface of the water. Furthermore, these sorbents were successfully integrated and then applied to the advanced oil-collecting devices such as a barrel-shaped oil skimmer and a self-primed oil pump.

3.
Curr Drug Deliv ; 18(9): 1303-1313, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33475061

RESUMO

BACKGROUND: A capsaicin cream was formulated by optimizing the rheological stability, the release behavior of the drug, and the pharmacological effect. OBJECTIVES: This study aimed to: (a) apply the Design of Experiment approach to study the rheological stability and release behaviors of a drug (capsaicin) from a formulated oil-in-water cream and (b) investigate the skin irritation and anti-inflammatory and analgesic effects of the optimized cream. METHODS: The cream prepared by the emulsification method was optimized using the central composite design, and then the pharmacological effect in experimental animals was determined using Complete Freund's adjuvant (CFA). RESULTS: The effects of a permeation enhancer (X1), Vaseline (X2), and surfactants (X3) on the fluctuation of the ratio of the viscous modulus (G ') to elastic modulus (G') (tan δ) after three cycles of cooling-heating (10-40°C), flux, and skin deposition of capsaicin after 8 h on mouse skin were statistically analyzed and optimized. The final obtained CAP-cream did not cause irritation in the rabbit model and produced comparable anti-inflammatory and analgesic effects to the reference product (Voltaren® emulgel). CONCLUSION: This study successfully integrated the DoE approach, rheological science, and pharmacological studies to develop a stable and highly effective semi-solid product containing capsaicin.


Assuntos
Analgésicos , Anti-Inflamatórios , Animais , Capsaicina , Camundongos , Coelhos , Reologia , Absorção Cutânea
4.
Sci Rep ; 10(1): 4317, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32132551

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

5.
Sci Rep ; 9(1): 19846, 2019 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882649

RESUMO

We investigated operation of a planar MAPbI3 solar cell with respect to intensity variation ranging from 0.01 to 1 sun. Measured J-V curves consisted of space-charge-limited currents (SCLC) in a drift-dominant range and diode-like currents in a diffusion-dominant range. The variation of power-law exponent of SCLC showed that charge trapping by defects diminished as intensity increased, and that drift currents became eventually almost ohmic. Diode-like currents were analysed using a modified Shockley-equation model, the validity of which was confirmed by comparing measured and estimated open-circuit voltages. Intensity dependence of ideality factor led us to the conclusion that there were two other types of defects that contributed mostly as recombination centers. At low intensities, monomolecular recombination occurred due to one of these defects in addition to bimolecular recombination to result in the ideality factor of ~1.7. However, at high intensities, another type of defect not only took over monomolecular recombination, but also dominated bimolecular recombination to result in the ideality factor of ~2.0. These ideality-factor values were consistent with those representing the intensity dependence of loss-current ratio estimated by using a constant internal-quantum-efficiency approximation. The presence of multiple types of defects was corroborated by findings from equivalent-circuit analysis of impedance spectra.

6.
Sci Rep ; 6: 30759, 2016 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-27465263

RESUMO

UNLABELLED: In this work, we report on solution-based p-i-n-type planar-structured CH3NH3PbI3 perovskite photovoltaic (PV) cells, in which precrystallized NiO nanoparticles (NPs) without post-treatment are used to form a hole transport layer (HTL). X-ray diffraction and high-resolution transmission electron microscopy showed the crystallinity of the NPs, and atomic force microscopy and scanning electron microscopy confirmed the uniform surfaces of the resultant NiO thin film and the subsequent perovskite photoactive layer. Compared to the conventional poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PEDOT: PSS) HTL, the NiO HTL had excellent energy-level alignment with that of CH3NH3PbI3 and improved electron-blocking capability, as analyzed by photoelectron spectroscopy and diode modeling, resulting in Voc ~0.13 V higher than conventional PEDOT: PSS-based devices. Consequently, a power conversion efficiency (PCE) of 15.4% with a high fill factor (FF, 0.74), short-circuit current density (Jsc, 20.2 mA·cm(-2)), and open circuit voltage (Voc, 1.04 V) having negligible hysteresis and superior air stability has been achieved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...