Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 10(1): 277, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37173336

RESUMO

Mammography, or breast X-ray imaging, is the most widely used imaging modality to detect cancer and other breast diseases. Recent studies have shown that deep learning-based computer-assisted detection and diagnosis (CADe/x) tools have been developed to support physicians and improve the accuracy of interpreting mammography. A number of large-scale mammography datasets from different populations with various associated annotations and clinical data have been introduced to study the potential of learning-based methods in the field of breast radiology. With the aim to develop more robust and more interpretable support systems in breast imaging, we introduce VinDr-Mammo, a Vietnamese dataset of digital mammography with breast-level assessment and extensive lesion-level annotations, enhancing the diversity of the publicly available mammography data. The dataset consists of 5,000 mammography exams, each of which has four standard views and is double read with disagreement (if any) being resolved by arbitration. The purpose of this dataset is to assess Breast Imaging Reporting and Data System (BI-RADS) and breast density at the individual breast level. In addition, the dataset also provides the category, location, and BI-RADS assessment of non-benign findings. We make VinDr-Mammo publicly available as a new imaging resource to promote advances in developing CADe/x tools for mammography interpretation.


Assuntos
Benchmarking , Doenças Mamárias , Humanos , Mama/diagnóstico por imagem , Computadores , Mamografia/métodos
2.
Sci Data ; 10(1): 240, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37100784

RESUMO

Computer-aided diagnosis systems in adult chest radiography (CXR) have recently achieved great success thanks to the availability of large-scale, annotated datasets and the advent of high-performance supervised learning algorithms. However, the development of diagnostic models for detecting and diagnosing pediatric diseases in CXR scans is undertaken due to the lack of high-quality physician-annotated datasets. To overcome this challenge, we introduce and release PediCXR, a new pediatric CXR dataset of 9,125 studies retrospectively collected from a major pediatric hospital in Vietnam between 2020 and 2021. Each scan was manually annotated by a pediatric radiologist with more than ten years of experience. The dataset was labeled for the presence of 36 critical findings and 15 diseases. In particular, each abnormal finding was identified via a rectangle bounding box on the image. To the best of our knowledge, this is the first and largest pediatric CXR dataset containing lesion-level annotations and image-level labels for the detection of multiple findings and diseases. For algorithm development, the dataset was divided into a training set of 7,728 and a test set of 1,397. To encourage new advances in pediatric CXR interpretation using data-driven approaches, we provide a detailed description of the PediCXR data sample and make the dataset publicly available on https://physionet.org/content/vindr-pcxr/1.0.0/ .


Assuntos
Radiografia Torácica , Doenças Torácicas , Criança , Humanos , Algoritmos , Diagnóstico por Computador/métodos , Radiografia Torácica/métodos , Estudos Retrospectivos , Doenças Torácicas/diagnóstico por imagem
3.
PLoS One ; 17(10): e0276545, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36315483

RESUMO

Deep learning, in recent times, has made remarkable strides when it comes to impressive performance for many tasks, including medical image processing. One of the contributing factors to these advancements is the emergence of large medical image datasets. However, it is exceedingly expensive and time-consuming to construct a large and trustworthy medical dataset; hence, there has been multiple research leveraging medical reports to automatically extract labels for data. The majority of this labor, however, is performed in English. In this work, we propose a data collecting and annotation pipeline that extracts information from Vietnamese radiology reports to provide accurate labels for chest X-ray (CXR) images. This can benefit Vietnamese radiologists and clinicians by annotating data that closely match their endemic diagnosis categories which may vary from country to country. To assess the efficacy of the proposed labeling technique, we built a CXR dataset containing 9,752 studies and evaluated our pipeline using a subset of this dataset. With an F1-score of at least 0.9923, the evaluation demonstrates that our labeling tool performs precisely and consistently across all classes. After building the dataset, we train deep learning models that leverage knowledge transferred from large public CXR datasets. We employ a variety of loss functions to overcome the curse of imbalanced multi-label datasets and conduct experiments with various model architectures to select the one that delivers the best performance. Our best model (CheXpert-pretrained EfficientNet-B2) yields an F1-score of 0.6989 (95% CI 0.6740, 0.7240), AUC of 0.7912, sensitivity of 0.7064 and specificity of 0.8760 for the abnormal diagnosis in general. Finally, we demonstrate that our coarse classification (based on five specific locations of abnormalities) yields comparable results to fine classification (twelve pathologies) on the benchmark CheXpert dataset for general anomaly detection while delivering better performance in terms of the average performance of all classes.


Assuntos
Aprendizado Profundo , Radiologia , Humanos , Tórax/diagnóstico por imagem , Radiografia Torácica/métodos , Povo Asiático
4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 2144-2148, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36085843

RESUMO

Advanced deep learning (DL) algorithms may predict the patient's risk of developing breast cancer based on the Breast Imaging Reporting and Data System (BI-RADS) and density standards. Recent studies have suggested that the combination of multi-view analysis improved the overall breast exam classification. In this paper, we propose a novel multi-view DL approach for BI-RADS and density assessment of mammograms. The proposed approach first deploys deep convolutional networks for feature extraction on each view separately. The extracted features are then stacked and fed into a Light Gradient Boosting Machine (LightGBM) classifier to predict BI-RADS and density scores. We conduct extensive experiments on both the internal mammography dataset and the public dataset Digital Database for Screening Mammogra-phy (DDSM). The experimental results demonstrate that the proposed approach outperforms the single-view classification approach on two benchmark datasets by huge F1-score margins (+5% on the internal dataset and +10% on the DDSM dataset). These results highlight the vital role of combining multi-view information to improve the performance of breast cancer risk prediction.


Assuntos
Neoplasias da Mama , Aprendizado Profundo , Benchmarking , Mama/diagnóstico por imagem , Neoplasias da Mama/diagnóstico por imagem , Feminino , Humanos , Mamografia
5.
Sci Data ; 9(1): 429, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35858929

RESUMO

Most of the existing chest X-ray datasets include labels from a list of findings without specifying their locations on the radiographs. This limits the development of machine learning algorithms for the detection and localization of chest abnormalities. In this work, we describe a dataset of more than 100,000 chest X-ray scans that were retrospectively collected from two major hospitals in Vietnam. Out of this raw data, we release 18,000 images that were manually annotated by a total of 17 experienced radiologists with 22 local labels of rectangles surrounding abnormalities and 6 global labels of suspected diseases. The released dataset is divided into a training set of 15,000 and a test set of 3,000. Each scan in the training set was independently labeled by 3 radiologists, while each scan in the test set was labeled by the consensus of 5 radiologists. We designed and built a labeling platform for DICOM images to facilitate these annotation procedures. All images are made publicly available in DICOM format along with the labels of both the training set and the test set.


Assuntos
Algoritmos , Radiografia Pulmonar de Massa , Humanos , Radiografia , Radiologistas , Estudos Retrospectivos
6.
Med Phys ; 49(7): 4518-4528, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35428990

RESUMO

PURPOSE: A fully automated system for interpreting abdominal computed tomography (CT) scans with multiple phases of contrast enhancement requires an accurate classification of the phases. Current approaches to classify the CT phases are commonly based on three-dimensional (3D) convolutional neural network (CNN) approaches with high computational complexity and high latency. This work aims at developing and validating a precise, fast multiphase classifier to recognize three main types of contrast phases in abdominal CT scans. METHODS: We propose in this study a novel method that uses a random sampling mechanism on top of deep CNNs for the phase recognition of abdominal CT scans of four different phases: noncontrast, arterial, venous, and others. The CNNs work as a slicewise phase prediction, while random sampling selects input slices for the CNN models. Afterward, majority voting synthesizes the slicewise results of the CNNs to provide the final prediction at the scan level. RESULTS: Our classifier was trained on 271 426 slices from 830 phase-annotated CT scans, and when combined with majority voting on 30% of slices randomly chosen from each scan, achieved a mean F1 score of 92.09% on our internal test set of 358 scans. The proposed method was also evaluated on two external test sets: CTPAC-CCRCC (N = 242) and LiTS (N = 131), which were annotated by our experts. Although a drop in performance was observed, the model performance remained at a high level of accuracy with a mean F1 scores of 76.79% and 86.94% on CTPAC-CCRCC and LiTS datasets, respectively. Our experimental results also showed that the proposed method significantly outperformed the state-of-the-art 3D approaches while requiring less computation time for inference. CONCLUSIONS: In comparison to state-of-the-art classification methods, the proposed approach shows better accuracy with significantly reduced latency. Our study demonstrates the potential of a precise, fast multiphase classifier based on a two-dimensional deep learning approach combined with a random sampling method for contrast phase recognition, providing a valuable tool for extracting multiphase abdomen studies from low veracity, real-world data.


Assuntos
Carcinoma de Células Renais , Aprendizado Profundo , Neoplasias Renais , Carcinoma de Células Renais/diagnóstico por imagem , Humanos , Neoplasias Renais/diagnóstico por imagem , Redes Neurais de Computação , Tomografia Computadorizada por Raios X/métodos
7.
PLoS One ; 15(6): e0229276, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32542016

RESUMO

Tyrosine is mainly degraded in the liver by a series of enzymatic reactions. Abnormal expression of the tyrosine catabolic enzyme tyrosine aminotransferase (TAT) has been reported in patients with hepatocellular carcinoma (HCC). Despite this, aberration in tyrosine metabolism has not been investigated in cancer development. In this work, we conduct comprehensive cross-platform study to obtain foundation for discoveries of potential therapeutics and preventative biomarkers of HCC. We explore data from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), Gene Expression Profiling Interactive Analysis (GEPIA), Oncomine and Kaplan Meier plotter (KM plotter) and performed integrated analyses to evaluate the clinical significance and prognostic values of the tyrosine catabolic genes in HCC. We find that five tyrosine catabolic enzymes are downregulated in HCC compared to normal liver at mRNA and protein level. Moreover, low expression of these enzymes correlates with poorer survival in patients with HCC. Notably, we identify pathways and upstream regulators that might involve in tyrosine catabolic reprogramming and further drive HCC development. In total, our results underscore tyrosine metabolism alteration in HCC and lay foundation for incorporating these pathway components in therapeutics and preventative strategies.


Assuntos
Biomarcadores Tumorais/metabolismo , Perfilação da Expressão Gênica , Neoplasias Hepáticas/patologia , Tirosina/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , MicroRNAs/genética , Mutação , Prognóstico
8.
IEEE Trans Med Imaging ; 37(6): 1440-1453, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29870372

RESUMO

We present a new image reconstruction method that replaces the projector in a projected gradient descent (PGD) with a convolutional neural network (CNN). Recently, CNNs trained as image-to-image regressors have been successfully used to solve inverse problems in imaging. However, unlike existing iterative image reconstruction algorithms, these CNN-based approaches usually lack a feedback mechanism to enforce that the reconstructed image is consistent with the measurements. We propose a relaxed version of PGD wherein gradient descent enforces measurement consistency, while a CNN recursively projects the solution closer to the space of desired reconstruction images. We show that this algorithm is guaranteed to converge and, under certain conditions, converges to a local minimum of a non-convex inverse problem. Finally, we propose a simple scheme to train the CNN to act like a projector. Our experiments on sparse-view computed-tomography reconstruction show an improvement over total variation-based regularization, dictionary learning, and a state-of-the-art deep learning-based direct reconstruction technique.


Assuntos
Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Humanos , Razão Sinal-Ruído
9.
IEEE Trans Image Process ; 23(12): 5545-58, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25373083

RESUMO

We propose a vector space approach for inverse rendering of a Lambertian convex object with distant light sources. In this problem, the texture of the object and arbitrary lightings are both to be recovered from multiple images of the object and its 3D model. Our work is motivated by the observation that all possible images of a Lambertian object lie around a low-dimensional linear subspace spanned by the first few spherical harmonics. The inverse rendering can therefore be formulated as a matrix factorization, in which the basis of the subspace is encoded in a spherical harmonic matrix S associated with the object's geometry. A necessary and sufficient condition on S for unique factorization is derived with an introduction to a new notion of matrix rank called nonseparable full rank. A singular value decomposition-based algorithm for exact factorization in the noiseless case is introduced. In the presence of noise, two algorithms, namely, alternating and optimization based are proposed to deal with two different types of noise. A random sample consensus-based algorithm is introduced to reduce the size of the optimization problem, which is equal to the number of pixels in each image. Implementations of the proposed algorithms are done on a real data set.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...