Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 13(50): 35339-35348, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38058561

RESUMO

This study delves into the advanced integration of a ternary heterogeneous Z-scheme photocatalyst, TiO2/CuInS2/OCN (OCN: O-g-C3N4), with carbon quantum dot (CQD) to improve the degradation efficiency of reactive yellow 145 (RY145) dye in water. Through a systematic examination, we elucidated the photocatalytic mechanisms and the role of radicals, electrons, and holes in the treatment process. Our findings revealed that this novel catalyst integration significantly boosted RY145 degradation efficiency, achieving 98.2%, which is markedly higher than the efficiencies which could be achieved using TiO2/CuInS2/OCN alone. Moreover, the TiO2/CuInS2/OCN/CQD photocatalyst demonstrated superior rate performance over its components. Comprehensive evaluations, including photoelectrochemical and radical tests, further confirmed the efficiency of the integrated system, adhering to Z-scheme principles. The catalyst showcased remarkable stability, with over 94% reusability after five reaction cycles. These findings pave the way for the potential use of the TiO2/CuInS2/OCN/CQD photocatalyst as an innovative solution for water pollutant treatment via photocatalytic technology.

2.
RSC Adv ; 13(18): 12402-12410, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37091624

RESUMO

This study reports on the synthesis and characterization of ZnO-Ag@AgBr/SBA-15 composites using natural halloysite clay from Yenbai Province, Vietnam, as a silica aluminum source. The synthesized materials demonstrated visible light absorption with a band gap energy range of 2.63-2.98 eV. The dual Z-scheme ZnO-Ag@AgBr/SBA-15 heterojunction exhibited superior catalytic performance compared to ZnO/SBA-15 and Ag@AgBr/SBA-15, owing to its improved electron transfer and reduced electron and hole recombination rate. In particular, the photocatalytic efficiency of ZnO-Ag@AgBr/SBA-15 was evaluated for the removal of harmful phenol red from wastewater under visible light irradiation. The photocatalytic process was optimized by varying the phenol red concentration, pH, and catalyst dosage, and showed that 98.8% of phenol red in 100 mL wastewater (pH = 5.5) can be removed using 40 mg of 20%ZnO-Ag@AgBr/SBA-15 within 120 min. Furthermore, the degradation pathway of phenol red was predicted using liquid chromatographic-mass spectrometry (LC-MS). Finally, the photocatalytic process was successfully tested using water samples collected from the four main domestic waste sources in Hanoi, including the To Lich River, the Hong River, the Hoan Kiem Lake, and the West Lake, demonstrating the high potential of the ZnO-Ag@AgBr/SBA-15 photocatalyst for phenol red degradation in real-world wastewater treatment applications.

3.
RSC Adv ; 12(52): 33825-33834, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36505679

RESUMO

In this paper, a novel bimetallic Fe-Cu metal-organic framework combined with 1,3,5-benzenetricarboxylic acid (Fe-Cu-BTC) are synthesized using hydrothermal reaction. The bimetallic Fe-Cu-BTC with high BET (1504 cm3 g-1) and high Langmuir surface area (1831 cm3 g-1) is composited by gold nanoparticles to improve the conductivity and to develop their synergistic effect. A novel bisphenol A (BPA) sensor was prepared by dropcasting Fe-Cu-BTC on glassy carbon electrodes (GCE) followed by AuNPs electrodeposition. The Fe-Cu-BTC framework were characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy studies (TEM), FT-IR, BET measurements and EDX spectra. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were carried out for surveying the electrochemical properties of the sensors and for the quantification of BPA. Two linear ranges of BPA concentrations 0.1-1.0 µM and 1.0-18 µM with 18 nM limit of detection were obtained. The developed sensor was used to measure the concentration of BPA in samples extracted from rain coat with the recovery ranging from 85.70 to 103.23%.

4.
RSC Adv ; 12(35): 22367-22376, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36105971

RESUMO

In our study, Zr-based UiO-66 (Zr) was synthesized using terephthalic acid obtained from waste plastic. Thereafter, UiO-66/g-C3N4 composites were prepared by the solvothermal method, and their photocatalytic activity in the photodegradation of the chemical warfare agent simulant, dimethyl 4-nitrophenyl phosphate (DMNP), was evaluated. The as-synthesized UiO-66/g-C3N4 exhibited a high surface area (1440 m2 g-1) and a high capillary volume (1.49 cm3 g-1). The UiO-66/g-C3N4 samples absorbed a visible light band with bandgap energies of 2.13-2.88 eV. The as-synthesized UiO-66/g-C3N4 composites exhibited highly efficient degradation of DMNP with a short half-life (t 1/2 of 2.17 min) at pH 7 under visible light irradiation. The trapping experiments confirmed that the h+ and ˙O2 - radicals played an important role in the photocatalytic degradation of DMNP. The UiO-66/g-C3N4 catalyst simultaneously performed two processes: the hydrolysis and photocatalytic oxidation of DMNP in water. During irradiation, a p-n heterojunction between UiO-66 and g-C3N4 restricted the recombination of photogenerated electrons and holes, resulting in the enhancement in the degradation rate of DMNP.

5.
J Hazard Mater ; 420: 126560, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34274809

RESUMO

Agx-Zn100-x-BTC/GO composites (BTC: benzene-1,3,5-tricarboxylic, GO: graphene oxide) with different Ag/Zn molar ratios were synthesized using microwave-assisted hydrothermal treatment. The Agx-Zn100-x-BTC/GO exhibited excellent photocatalytic performance in the reactive yellow 145 dye (RY-145) degradation under irradiation of visible light with nearly 100% of RY-145 removal after 35 min, as compared to Zn-BTC/GO and Ag-BTC/GO. Reactive oxygen species scavenging assays have shown that the holes (h+) and superoxide radical anion (O2-•) play a primary role in RY-145 degradation. Based on the band structure of materials, the Z-scheme photocatalytic mechanism was suggested. The effect of catalyst dosage, pH and dye concentration on the efficiency of photocatalytic activity of bimetallic Ag50-Zn50-BTC/GO was also investigated. The improvement in photocatalytic activity of bimetallic Ag50-Zn50-BTC/GO could be given by the synergism of (i) absorption of visible light confirmed by UV-Vis diffuse reflectance spectra; (ii) the increased lifetime as evidenced by photoluminescence spectra and transient photocurrent response; (iii) the increased oxygen vacancy defects as confirmed by X-ray photoelectron spectroscopy results. The degradation pathway of RY-145 dye was also predicted based on liquid chromatography-mass spectrometer analysis. The removed chemical oxygen demand, biological oxygen demand, total organic carbon outcomes indicated the high mineralization ability for RY-145 degradation over Ag50-Zn50-BTC/GO.


Assuntos
Luz , Água , Catálise , Zinco
6.
RSC Adv ; 11(50): 31738-31745, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-35496832

RESUMO

Integration between conventional semiconductors and porous materials can enhance electron-hole separation, improving photocatalytic activity. Here, we introduce a heterostructure that was successfully constructed between vanadium pentoxide (V2O5) and mesoporous SBA-15 using inexpensive halloysite clay as the silica-aluminium source. The composite material with 40% doped V2O5 shows excellent catalytic performance in the oxidative desulphurisation of dibenzothiophene (conversion of 99% with only a minor change after four-cycle tests). These results suggest the development of new catalysts made from widely available natural minerals that show high stability and can operate in natural light to produce fuel oils with ultra-low sulphur content.

7.
Chemosphere ; 265: 129062, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33250232

RESUMO

The modified Al-MCM-41 solid acids with turning Si/Al molar ratio were successfully fabricated through a hydrothermal route and utilized as a suitable catalyst in the cellulose conversion into 5-hydroxylmethylfurfural (5-HMF). The crystal structure, composition, morphologies and porosity of as-synthesized acids were characterized by XRD, FT-IR, N2 adsorption-desorption, TEM and EDS. The 27Al MAS NMR and 29Si-MAS NMR results revealed the existence of both Al framework and Al extra framework. Besides, the existence of medium-weak and strong acid sites, according to Brønsted and Lewis acidity, in Al-MCM-41 acids was confirmed by NH3-TPD and FTIR-pyridine adsorption. The 30Al-MCM-41 solid acid (Si/Al molar ratio = 30) exhibited excellent activity with the highest 5-HMF yield of 40.56% compared to other samples. We also discovered that 5-HMF production, as well as cellulose conversion, strongly depended on the total acid, strong/medium-weak acid ratio, as well as Brønsted/Lewis acid ratio. Therefore, these parameters have been considered as essential factors for the design of solid acid for 5-HMF production.


Assuntos
Celulose , Ácidos de Lewis , Dióxido de Silício , Espectroscopia de Infravermelho com Transformada de Fourier
8.
RSC Adv ; 10(69): 42212-42220, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-35516768

RESUMO

In the present work, we reported the fabrication of a novel electrochemical sensing platform to detect 2,4-dichlorophenol (2,4-DCP) by using a copper benzene-1,3,5-tricarboxylate-graphene oxide (Cu-BTC/GO) composite. The sensor was prepared by drop-casting Cu-BTC/GO suspension onto the electrode surface followed by electrochemical reduction, leading to the generation of an electrochemically reduced graphene oxide network (ErGO). By combining the large specific area of the Cu-BTC matrix with the electrical percolation from the graphene network, the number of accessible reaction sites was strongly increased, which consequently improved the detection performance. The electrochemical characteristics of the composite were revealed by cyclic voltammetry and electrochemical impedance spectroscopy. For the detection of 2,4-DCP, differential pulse voltammetry was used to emphasize the faradaic reaction related to the oxidation of the analyte. The results displayed a low detection limit (83 × 10-9 M) and a linear range from 1.5 × 10-6 M to 24 × 10-6 M alongside high reproducibility (RSD = 2.5% for eight independent sensors) and good stability. Importantly, the prepared sensors were sufficiently selective against interference from other pollutants in the same electrochemical window. Notably, the presented sensors have already proven their ability in detecting 2,4-DCP in real field samples with high accuracy (recovery range = 97.17-104.15%).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...