Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Waste Manag ; 52: 367-74, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27053375

RESUMO

The application of an environmentally benign sulfonated carbon microsphere catalyst for biodiesel production from waste cooking oil was investigated. This catalyst was prepared by the sequential hydrothermal carbonization and sulfonation of xylose. The morphology, surface area, and acid properties were analyzed. The surface area and acidity of the catalyst were 86m(2)/g and 1.38mmol/g, respectively. In addition, the presence of sulfonic acid on the carbon surface was confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The catalytic activity was tested for biodiesel production from waste cooking oil via a two-step reaction to overcome reaction equilibrium. The highest biodiesel yield (89.6%) was obtained at a reaction temperature of 110°C, duration time of 4h, and catalyst loading of 10wt% under elevated pressure 2.3bar and 1.4bar for first and second step, respectively. The reusability of the catalyst was investigated and showed that the biodiesel yield decreased by 9% with each cycle; however, this catalyst is still of interest because it is an example of green chemistry, is nontoxic, and makes use of xylose waste.


Assuntos
Biocombustíveis , Culinária , Química Verde/métodos , Óleos de Plantas/química , Reciclagem/métodos , Resíduos , Espectroscopia Fotoeletrônica , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...