Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 12(30): 34402-34412, 2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32609487

RESUMO

The ability to control or prevent phase segregation in perovskites is crucial to realizing stable and tunable mixed-halide optoelectronic devices. In this work, we systematically examine the impact of alkali-metal-cation (Cs+ and K+) concentration on the band structure, chemical composition, phase segregation, and polycrystalline microstructure on formamidinium-dominated mixed-halide mixed-cation perovskite films. It was found that the incorporation of Cs+ and K+ cations decreases the work function and the core levels of all components shift toward higher binding energy consistent with n-doping the perovskite film, which facilitates electron transfer to the electron transport layer TiO2. A concentration-dependent film structure was observed by X-ray photoemission spectroscopy and grazing incidence wide-angle X-ray scattering where the halides and cations are distributed evenly across perovskite films at low metallic cation concentration (5%). A high metal-cation ratio (20%) leads to halide segregation within the perovskite film and the surface becomes bromide-poor, whereas the bromide and metal cations diffuse more deeply within the film. These differences in electronic properties, element distribution, and film morphology were reflected in the device performance where the power conversion efficiency of low-metallic-cation concentration (5% of Cs+ and K+) perovskite solar cells is ≈5% higher than the high-concentration ones (20%). This study provides valuable chemical and physical insight into the underlying trade-offs in the careful tuning of electrical properties and film structure to optimize multication and mixed-halide hybrid perovskites.

2.
Artigo em Inglês | MEDLINE | ID: mdl-34877178

RESUMO

The growth of transition metal dichalcogenide (TMDC) alloys provides an opportunity to experimentally access information elucidating how optical properties change with gradual substitutions in the lattice compared with their pure compositions. In this work, we performed growths of alloyed crystals with stoichiometric compositions between pure forms of NbSe2 and WSe2, followed by an optical analysis of those alloys by utilizing Raman spectroscopy and spectroscopic ellipsometry.

3.
Point Care ; 17(3): 73-92, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30245595

RESUMO

OBJECTIVES: Objectives were to (a) advance point-of-care (POC) education, international exchange, and culture; (b) report needs assessment survey results from Thua Thien Hue Province, Central Vietnam; (c) determine diagnostic capabilities in regional health care districts of the small-world network of Hue University Medical Center; and (d) recommend Spatial Care Paths that accelerate the care of acute myocardial infarction (AMI) patients. METHODS: We organized progressively focused, intensive, and interactive lectures, workshops, and investigative teamwork over a 2-year period. We surveyed hospital staff in person to determine the status of diagnostic testing at 15 hospitals in 7 districts. Questions focused on cardiac rapid response, prediabetes/diabetes, infectious diseases, and other serious challenges, including epidemic preparedness. RESULTS: Educational exchange revealed a nationwide shortage of POC coordinators. Throughout the province, ambulances transfer patients primarily between hospitals, rarely picking up from homes. No helicopter rescue was available. Ambulance travel times from distant sites to referral hospitals were excessive, longer in costal and mountainous areas. Most hospitals (92.3%) used electrocardiogram and creatine phosphokinase-MB isoenzyme to diagnose AMI. Cardiac troponin I/T testing was performed only at large referral hospitals. CONCLUSIONS: Central Vietnam must improve rapid diagnosis and treatment of AMI patients. Early upstream POC cardiac troponin testing on Spatial Care Paths will expedite transfers directly to hospitals capable of intervening, improving outcomes following coronary occlusion. Point-of-care coordinator certification and financial support will enhance standards of care cost-effectively. Training young physicians pivots on high-value evidence-based learning when POC cardiac troponin T/cardiac troponin I biomarkers are in place for rapid decision making, especially in emergency rooms.

4.
2d Mater ; 5(1)2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29545949

RESUMO

Monolayer epitaxial graphene (EG), grown on the Si face of SiC, is an advantageous material for a variety of electronic and optical applications. EG forms as a single crystal over millimeter-scale areas and consequently, the large scale single crystal can be utilized as a template for growth of other materials. In this work, we present the use of EG as a template to form millimeter-scale amorphous and hexagonal boron nitride (a-BN and h-BN) films. The a-BN is formed with pulsed laser deposition and the h-BN is grown with triethylboron (TEB) and NH3 precursors, making it the first metal organic chemical vapor deposition (MOCVD) process of this growth type performed on epitaxial graphene. A variety of optical and non-optical characterization methods are used to determine the optical absorption and dielectric functions of the EG, a-BN, and h-BN within the energy range of 1 eV to 8.5 eV. Furthermore, we report the first ellipsometric observation of high-energy resonant excitons in EG from the 4H polytype of SiC and an analysis on the interactions within the EG and h-BN heterostructure.

5.
Phys Rev B ; 982018.
Artigo em Inglês | MEDLINE | ID: mdl-30984898

RESUMO

Transition-metal dichalcogenides (TMDCs) have offered experimental access to quantum confinement in one dimension. In recent years, metallic TMDCs like NbSe2 have taken center stage with many of them exhibiting interesting temperature-dependent properties such as charge density waves and superconductivity. In this paper, we perform a comprehensive optical analysis of NbSe2 by utilizing Raman spectroscopy, differential reflectance contrast, and spectroscopic ellipsometry. These analyses, when coupled with Kramers-Kronig analysis, allow us to extract the dielectric functions of bulk and atomically thin NbSe2 and relate them to the resonant behavior of the Raman spectra.

6.
Phys Rev B ; 96(19)2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29541699

RESUMO

Monolayer epitaxial graphene (EG) is a suitable candidate for a variety of electronic applications. One advantage of EG growth on the Si face of SiC is that it develops as a single crystal, as does the layer below, referred to as the interfacial buffer layer (IBL), whose properties include an electronic band gap. Though much research has been conducted to learn about the electrical properties of the IBL, not nearly as much work has been reported on the optical properties of the IBL. In this work, we combine measurements from Mueller matrix ellipsometry, differential reflectance contrast, atomic force microscopy, and Raman spectroscopy, as well as calculations from Kramers-Kronig analyses and density functional theory (DFT), to determine the dielectric function of the IBL within the energy range of 1 eV to 8.5 eV.

7.
Adv Electron Mater ; 2(9)2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27840807

RESUMO

The need for low-cost high-performance broadband photon detection with sensitivity in the near infrared (NIR) has driven interest in new materials that combine high absorption with traditional electronic infrastructure (CMOS) compatibility. Here, we demonstrate a facile, low-cost and scalable, catalyst-free one-step solution-processed approach to grow one-dimensional Sb2Se3 nanostructures directly on flexible substrates for high-performance NIR photodetectors. Structural characterization and compositional analyses reveal high-quality single-crystalline material with orthorhombic crystal structure and a near-stoichiometric Sb/Se atomic ratio. We measure a direct band gap of 1.12 eV, which is consistent with predictions from theoretical simulations, indicating strong NIR potential. The fabricated metal-semiconductor-metal photodetectors exhibit fast response (on the order of milliseconds) and high performance (responsivity ~ 0.27 A/W) as well as excellent mechanical flexibility and durability. The results demonstrate the potential of molecular-ink-based Sb2Se3 nanostructures for flexible electronic and broadband optoelectronic device applications.

8.
Sci Rep ; 5: 16996, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26598075

RESUMO

We systematically measure the dielectric function of atomically thin MoS2 films with different layer numbers and demonstrate that excitonic effects play a dominant role in the dielectric function when the films are less than 5-7 layers thick. The dielectric function shows an anomalous dependence on the layer number. It decreases with the layer number increasing when the films are less than 5-7 layers thick but turns to increase with the layer number for thicker films. We show that this is because the excitonic effect is very strong in the thin MoS2 films and its contribution to the dielectric function may dominate over the contribution of the band structure. We also extract the value of layer-dependent exciton binding energy and Bohr radius in the films by fitting the experimental results with an intuitive model. The dominance of excitonic effects is in stark contrast with what reported at conventional materials whose dielectric functions are usually dictated by band structures. The knowledge of the dielectric function may enable capabilities to engineer the light-matter interactions of atomically thin MoS2 films for the development of novel photonic devices, such as metamaterials, waveguides, light absorbers, and light emitters.

9.
ACS Appl Mater Interfaces ; 7(18): 9660-7, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25898025

RESUMO

Solution-processed p-n heterojunction photodiodes have been fabricated based on transition-metal oxides in which NiO and ternary Zn(1-x)Mg(x)O (x = 0-0.1) have been employed as p-type and n-type semiconductors, respectively. Composition-related structural, electrical, and optical properties are also investigated for all the films. It has been observed that the bandgap of Zn(1-x)Mg(x)O films can be tuned between 3.24 and 3.49 eV by increasing Mg content. The fabricated highly visible-blind p-n junction photodiodes show an excellent rectification ratio along with good photoresponse and quantum efficiency under ultraviolet (UV) illumination. With an applied reverse bias of 1 V and depending on the value of x, the maximum responsivity of the devices varies between 0.22 and 0.4 A/W and the detectivity varies between 0.17 × 10(12) and 2.2 × 10(12) cm (Hz)(1/2)/W. The photodetectors show an excellent UV-to-visible rejection ratio. Compositional nonuniformity has been observed locally in the alloyed films with x = 0.1, which is manifested in photoresponse and X-ray analysis data. This paper demonstrates simple solution-processed, low cost, band tunable photodiodes with excellent figures of merit operated under low bias.

10.
APL Mater ; 3(10)2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26900532

RESUMO

A self-powered ultraviolet (UV) photodetector (PD) based on p-NiO and n-ZnO was fabricated using low-temperature sputtering technique on indium doped tin oxide (ITO) coated plastic polyethylene terephthalate (PET) substrates. The p-n heterojunction showed very fast temporal photoresponse with excellent quantum efficiency of over 63% under UV illumination at an applied reverse bias of 1.2 V. The engineered ultrathin Ti/Au top metal contacts and UV transparent PET/ITO substrates allowed the PDs to be illuminated through either front or back side. Morphology, structural, chemical and optical properties of sputtered NiO and ZnO films were also investigated.

11.
Appl Phys Lett ; 107(24)2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28729741

RESUMO

We report on the significant performance enhancement of SnO2 thin film ultraviolet (UV) photodetectors (PDs) through incorporation of CuO/SnO2p-n nanoscale heterojunctions. The nanoheterojunctions are self-assembled by sputtering Cu clusters that oxidize in ambient to form CuO. We attribute the performance improvements to enhanced UV absorption, demonstrated both experimentally and using optical simulations, and electron transfer facilitated by the nanoheterojunctions. The peak responsivity of the PDs at a bias of 0.2 V improved from 1.9 A/W in a SnO2-only device to 10.3 A/W after CuO deposition. The wavelength-dependent photocurrent-to-dark current ratio was estimated to be ~ 592 for the CuO/SnO2 PD at 290 nm. The morphology, distribution of nanoparticles, and optical properties of the CuO/SnO2 heterostructured thin films are also investigated.

12.
ACS Appl Mater Interfaces ; 6(18): 15972-9, 2014 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-25157419

RESUMO

This study presents windowless CdSe/CdTe thin film photovoltaic devices with in-plane patterning at a submicrometer length scale. The photovoltaic cells are fabricated upon two interdigitated comb electrodes prepatterned at micrometer length scale on an insulating substrate. CdSe is electrodeposited on one electrode, and CdTe is deposited by pulsed laser deposition over the entire surface of the resulting structure. Previous studies of symmetric devices are extended in this study. Specifically, device performance is explored with asymmetric devices having fixed CdTe contact width and a range of CdSe contact widths, and the devices are fabricated with improved dimensional tolerance. Scanning photocurrent microscopy (also known as laser beam induced current mapping) is used to examine local current collection efficiency, providing information on the spatial variation of performance that complements current-voltage and external quantum efficiency measurements of overall device performance. Modeling of carrier transport and recombination indicates consistency of experimental results for local and blanket illumination. Performance under simulated air mass 1.5 illumination exceeds 5% for all dimensions examined, and the best-performing device achieved 5.9% efficiency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...