Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anim Sci J ; 92(1): e13534, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33638256

RESUMO

This study aimed to investigate the efficiency of KRAS gene editing via CRISPR/Cas9 delivery by electroporation and analyzed the effects of the non-homologous end-joining pathway inhibitor Scr7 and single-stranded oligodeoxynucleotide (ssODN) homology arm length on introducing a point mutation in KRAS. Various concentrations (0-2 µM) of Scr7 were evaluated; all concentrations of Scr7 including 0 µM resulted in the generation of blastocysts with a point mutation and the wild-type sequence or indels. No significant differences in the blastocyst formation rates of electroporated zygotes were observed among ssODN homology arm lengths, irrespective of the gRNA (gRNA1 and gRNA2). The proportion of blastocysts carrying a point mutation with or without the wild-type sequence and indels was significantly higher in the ssODN20 group (i.e., the group with a ssODN homology arm of 20 bp) than in the ssODN60 group (gRNA1: 25.7% vs. 5.4% and gRNA2: 45.5% vs. 5.9%, p < .05). In conclusion, the CRISPR/Cas9 delivery with ssODN via electroporation is feasible for the generation of point mutations in porcine embryos. Further studies are required to improve the efficiency and accuracy of the homology-directed repair.


Assuntos
Sistemas CRISPR-Cas , Eletroporação/métodos , Fertilização in vitro/veterinária , Edição de Genes/métodos , Edição de Genes/veterinária , Oligodesoxirribonucleotídeos , Mutação Puntual , Proteínas Proto-Oncogênicas p21(ras)/genética , Suínos/embriologia , Suínos/genética , Zigoto , Animais , Blastocisto
2.
Anim Sci J ; 91(1): e13386, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32512638

RESUMO

This study was conducted to investigate the effect of seven concentrations of Cas9 protein (0, 25, 50, 100, 200, 500, and 1,000 ng/µl) on the development and gene editing of porcine embryos. This included the target editing and off-target effect of embryos developed from zygotes that were edited via electroporation of the Cas9 protein with guide RNA targeting Myostatin genes. We found that the development to blastocysts of electroporated zygotes was not affected by the concentration of Cas9 protein. Although the editing rate, which was defined as the ratio of edited blastocysts to total examined blastocysts, did not differ with Cas9 protein concentration, the editing efficiency, which was defined as the frequency of indel mutations in each edited blastocyst, was significantly decreased in the edited blastocysts from zygotes electroporated with 25 ng/µl of Cas9 protein compared with that of blastocysts from zygotes electroporated with higher Cas9 protein concentrations. Moreover the frequency of indel events at the two possible off-target sites was not significantly different with different concentrations of Cas9 protein. These results indicate that the concentration of Cas9 protein affects gene editing efficiency in embryos but not the embryonic development, gene editing rate, and non-specific cleavage of off-target sites.


Assuntos
Proteína 9 Associada à CRISPR , Eletroporação/métodos , Eletroporação/veterinária , Desenvolvimento Embrionário/genética , Edição de Genes , Marcação de Genes/veterinária , Miostatina/genética , RNA Guia de Cinetoplastídeos , Suínos/embriologia , Suínos/genética , Zigoto , Animais , Blastocisto , Proteína 9 Associada à CRISPR/farmacologia , Relação Dose-Resposta a Droga
3.
Anim Sci J ; 90(1): 55-61, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30368976

RESUMO

Recently, we established the GEEP ("gene editing by electroporation of Cas9 protein") method, in which the CRISPR/Cas9 system, consisting of a Cas9 protein and single guide RNA (sgRNA), is introduced into pig zygotes by electroporation and thus induces highly efficient targeted gene disruption. In this study, we examined the effects of sgRNA on the blastocyst formation of porcine embryos and evaluated their genome-editing efficiency. To produce an animal model for diabetes, we targeted PDX-1 (pancreas duodenum homeobox 1), a gene that is crucial for pancreas development during the fetal period and whose monoallelic disruption impairs insulin secretion. First, Cas9 protein with different sgRNAs that targeted distinct sites in the PDX-1 exon 1 was introduced into in vitro-fertilized zygotes by the GEEP method. Of the six sgRNAs tested, three sgRNAs (sgRNA1, 2, and 3) successfully modified PDX-1 gene. The blastocyst formation rate of zygotes edited with sgRNA3 was significantly (p < 0.05) lower than that of control zygotes without the electroporation treatment. Our study indicates that the GEEP method can be successfully used to generate PDX-1 mutant blastocysts, but the development and the efficiency of editing the genome of zygotes may be affected by the sgRNA used for CRISPR/Cas9 system.


Assuntos
Blastocisto , Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Eletroporação , Edição de Genes/métodos , Proteínas de Homeodomínio/genética , Mutação , Suínos/genética , Transativadores/genética , Zigoto , Animais , Feminino , Fertilização in vitro , RNA Guia de Cinetoplastídeos/genética
4.
Int J Health Geogr ; 15(1): 37, 2016 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-27776514

RESUMO

BACKGROUND: Artemisinin-resistant Plasmodium falciparum malaria parasites are now present across much of mainland Southeast Asia, where ongoing surveys are measuring and mapping their spatial distribution. These efforts require substantial resources. Here we propose a generic 'smart surveillance' methodology to identify optimal candidate sites for future sampling and thus map the distribution of artemisinin resistance most efficiently. METHODS: The approach uses the 'uncertainty' map generated iteratively by a geostatistical model to determine optimal locations for subsequent sampling. RESULTS: The methodology is illustrated using recent data on the prevalence of the K13-propeller polymorphism (a genetic marker of artemisinin resistance) in the Greater Mekong Subregion. CONCLUSION: This methodology, which has broader application to geostatistical mapping in general, could improve the quality and efficiency of drug resistance mapping and thereby guide practical operations to eliminate malaria in affected areas.


Assuntos
Anti-Infecciosos/farmacologia , Artemisininas/farmacologia , Doenças Transmissíveis Emergentes , Gerenciamento Clínico , Resistência a Medicamentos , Geografia , Nível de Saúde , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Vigilância da População/métodos , Anti-Infecciosos/uso terapêutico , Artemisininas/uso terapêutico , Sudeste Asiático , Humanos , Malária Falciparum/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...