Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Front Cell Infect Microbiol ; 13: 1297281, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38149013

RESUMO

Background: New drugs targeting antimicrobial resistant pathogens, including Pseudomonas aeruginosa, have been challenging to evaluate in clinical trials, particularly for the non-ventilated hospital-acquired pneumonia and ventilator-associated pneumonia indications. Development of new antibacterial drugs is facilitated by preclinical animal models that could predict clinical efficacy in patients with these infections. Methods: We report here an FDA-funded study to develop a rabbit model of non-ventilated pneumonia with Pseudomonas aeruginosa by determining the extent to which the natural history of animal disease reproduced human pathophysiology and conducting validation studies to evaluate whether humanized dosing regimens of two antibiotics, meropenem and tobramycin, can halt or reverse disease progression. Results: In a rabbit model of non-ventilated pneumonia, endobronchial challenge with live P. aeruginosa strain 6206, but not with UV-killed Pa6206, caused acute respiratory distress syndrome, as evidenced by acute lung inflammation, pulmonary edema, hemorrhage, severe hypoxemia, hyperlactatemia, neutropenia, thrombocytopenia, and hypoglycemia, which preceded respiratory failure and death. Pa6206 increased >100-fold in the lungs and then disseminated from there to infect distal organs, including spleen and kidneys. At 5 h post-infection, 67% of Pa6206-challenged rabbits had PaO2 <60 mmHg, corresponding to a clinical cut-off when oxygen therapy would be required. When administered at 5 h post-infection, humanized dosing regimens of tobramycin and meropenem reduced mortality to 17-33%, compared to 100% for saline-treated rabbits (P<0.001 by log-rank tests). For meropenem which exhibits time-dependent bactericidal activity, rabbits treated with a humanized meropenem dosing regimen of 80 mg/kg q2h for 24 h achieved 100% T>MIC, resulting in 75% microbiological clearance rate of Pa6206 from the lungs. For tobramycin which exhibits concentration-dependent killing, rabbits treated with a humanized tobramycin dosing regimen of 8 mg/kg q8h for 24 h achieved Cmax/MIC of 9.8 ± 1.4 at 60 min post-dose, resulting in 50% lung microbiological clearance rate. In contrast, rabbits treated with a single tobramycin dose of 2.5 mg/kg had Cmax/MIC of 7.8 ± 0.8 and 8% (1/12) microbiological clearance rate, indicating that this rabbit model can detect dose-response effects. Conclusion: The rabbit model may be used to help predict clinical efficacy of new antibacterial drugs for the treatment of non-ventilated P. aeruginosa pneumonia.


Assuntos
Pneumonia , Infecções por Pseudomonas , Humanos , Animais , Coelhos , Meropeném/uso terapêutico , Pseudomonas aeruginosa , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Tobramicina/farmacologia , Tobramicina/uso terapêutico , Pneumonia/tratamento farmacológico , Desenvolvimento de Medicamentos
2.
Front Immunol ; 14: 1260627, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781371

RESUMO

Background: Patients with septic shock caused by Staphylococcus aureus have mortality rates exceeding 50%, despite appropriate antibiotic therapy. Our objectives were to establish a rabbit model of S. aureus septic shock and to determine whether a novel immunotherapy can prevent or halt its natural disease progression. Methods: Anesthetized rabbits were ventilated with lung-protective low-tidal volume, instrumented for advanced hemodynamic monitoring, and characterized for longitudinal changes in acute myocardial dysfunction by echocardiography and sepsis-associated biomarkers after S. aureus intravenous challenge. To demonstrate the potential utility of this hyperdynamic septic shock model for preclinical drug development, rabbits were randomized for prophylaxis with anti-Hla/Luk/ClfA monoclonal antibody combination that neutralizes alpha-hemolysin (Hla), the bicomponent pore-forming leukocidins (Luk) including Panton-Valentine leukocidin, leukocidin ED, and gamma-hemolysin, and clumping factor A (ClfA), or an irrelevant isotype-matched control IgG (c-IgG), and then challenged with S. aureus. Results: Rabbits challenged with S. aureus, but not those with saline, developed a hyperdynamic state of septic shock characterized by elevated cardiac output (CO), increased stroke volume (SV) and reduced systemic vascular resistance (SVR), which was followed by a lethal hypodynamic state characterized by rapid decline in mean arterial pressure (MAP), increased central venous pressure, reduced CO, reduced SV, elevated SVR, and reduced left-ventricular ejection fraction, thereby reproducing the hallmark clinical features of human staphylococcal septic shock. In this model, rabbits pretreated with anti-Hla/Luk/ClfA mAb combination had 69% reduction in mortality when compared to those pretreated with c-IgG (P<0.001). USA300-induced acute circulatory failure-defined as >70% decreased in MAP from pre-infection baseline-occurred in only 20% (2/10) of rabbits pretreated with anti-Hla/Luk/ClfA mAb combination compared to 100% (9/9) of those pretreated with c-IgG. Prophylaxis with anti-Hla/Luk/ClfA mAb combination halted progression to lethal hypodynamic shock, as evidenced by significant protection against the development of hyperlactatemia, hypocapnia, hyperkalemia, leukopenia, neutropenia, monocytopenia, lymphopenia, as well as biomarkers associated with acute myocardial injury. Conclusion: These results demonstrate the potential utility of a mechanically ventilated rabbit model that reproduced hallmark clinical features of hyperdynamic septic shock and the translational potential of immunotherapy targeting S. aureus virulence factors for the prevention of staphylococcal septic shock.


Assuntos
Choque Séptico , Choque , Infecções Estafilocócicas , Humanos , Animais , Coelhos , Staphylococcus aureus , Anticorpos Monoclonais/uso terapêutico , Proteínas Hemolisinas , Leucocidinas , Choque Séptico/tratamento farmacológico , Respiração Artificial , Volume Sistólico , Função Ventricular Esquerda , Choque/tratamento farmacológico , Imunoglobulina G
3.
Nat Protoc ; 16(12): 5592-5615, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34773119

RESUMO

Genome-wide unbiased identification of double-stranded breaks enabled by sequencing (GUIDE-seq) is a sensitive, unbiased, genome-wide method for defining the activity of genome-editing nucleases in living cells. GUIDE-seq is based on the principle of efficient integration of an end-protected double-stranded oligodeoxynucleotide tag into sites of nuclease-induced DNA double-stranded breaks, followed by amplification of tag-containing genomic DNA molecules and high-throughput sequencing. Here we describe a detailed GUIDE-seq protocol including cell transfection, library preparation, sequencing and bioinformatic analysis. The entire protocol including cell culture can be completed in 9 d. Once tag-integrated genomic DNA is isolated, library preparation, sequencing and analysis can be performed in 3 d. The result is a genome-wide catalog of off-target sites ranked by nuclease activity as measured by GUIDE-seq read counts. GUIDE-seq is one of the most sensitive cell-based methods for defining genome-wide off-target activity and has been broadly adopted for research and therapeutic use.


Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas , Edição de Genes/métodos , Genoma Humano , Reação em Cadeia da Polimerase/métodos , RNA Guia de Cinetoplastídeos/genética , Proteína 9 Associada à CRISPR/metabolismo , Linhagem Celular Tumoral , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Primers do DNA/síntese química , Primers do DNA/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo II/química , Eletroporação/métodos , Humanos , Osteoblastos/citologia , Osteoblastos/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , Cultura Primária de Células , RNA Guia de Cinetoplastídeos/metabolismo , Linfócitos T/citologia , Linfócitos T/metabolismo
4.
Antimicrob Agents Chemother ; 65(7): e0272420, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33972247

RESUMO

Development and validation of large animal models of Pseudomonas aeruginosa ventilator-associated pneumonia are needed for testing new drug candidates in a manner that mimics how they will be used clinically. We developed a new model in which rabbits were ventilated with low tidal volume and challenged with P. aeruginosa to recapitulate hallmark clinical features of acute respiratory distress syndrome (ARDS): acute lung injury and inflammation, progressive decrease in arterial oxygen partial pressure to fractional inspired oxygen PaO2:FiO2, leukopenia, neutropenia, thrombocytopenia, hyperlactatemia, severe hypotension, bacterial dissemination from lung to other organs, multiorgan dysfunction, and ultimately death. We evaluated the predictive power of this rabbit model for antibiotic efficacy testing by determining whether a humanized dosing regimen of meropenem, a potent antipseudomonal ß-lactam antibiotic, when administered with or without intensive care unit (ICU)-supportive care (fluid challenge and norepinephrine), could halt or reverse natural disease progression. Our humanized meropenem dosing regimen produced a plasma concentration-time profile in the rabbit model similar to those reported in patients with ventilator-associated bacterial pneumonia. In this rabbit model, treatment with humanized meropenem and ICU-supportive care achieved the highest level of survival, halted the worsening of ARDS biomarkers, and reversed lethal hypotension, although treatment with humanized meropenem alone also conferred some protection compared to treatment with placebo (saline) alone or placebo plus ICU-supportive care. In conclusion, this rabbit model could help predict whether an antibiotic will be efficacious for the treatment of human ventilator-associated pneumonia.


Assuntos
Pneumonia Associada à Ventilação Mecânica , Pseudomonas aeruginosa , Animais , Antibacterianos/uso terapêutico , Desenvolvimento de Medicamentos , Humanos , Meropeném , Pneumonia Associada à Ventilação Mecânica/tratamento farmacológico , Coelhos
5.
Antimicrob Agents Chemother ; 65(7): e0183220, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33903108

RESUMO

In a rabbit model of methicillin-resistant Staphylococcus aureus prosthetic joint infection (PJI), prophylaxis with AZD6389*-a combination of three monoclonal antibodies targeting alpha-hemolysin, bicomponent cytotoxins (LukSF/LukED/HlgAB/HlgCB), and clumping factor A-resulted in significant reductions in joint swelling, erythema, intra-articular pus, and bacterial burden in synovial tissues and biofilm-associated prosthetic implants compared with isotype-matched control IgG. Targeting specific staphylococcal virulence factors may thus have potential clinical utility for prevention of PJI.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Animais , Anticorpos Monoclonais , Próteses e Implantes , Coelhos , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus , Virulência , Fatores de Virulência
6.
Front Immunol ; 12: 624310, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33777005

RESUMO

Staphylococcus aureus causes a wide range of diseases from skin infections to life threatening invasive diseases such as bacteremia, endocarditis, pneumonia, surgical site infections, and osteomyelitis. Skin infections such as furuncles, carbuncles, folliculitis, erysipelas, and cellulitis constitute a large majority of infections caused by S. aureus (SA). These infections cause significant morbidity, healthcare costs, and represent a breeding ground for antimicrobial resistance. Furthermore, skin infection with SA is a major risk factor for invasive disease. Here we describe the pre-clinical efficacy of a multicomponent toxoid vaccine (IBT-V02) for prevention of S. aureus acute skin infections and recurrence. IBT-V02 targets six SA toxins including the pore-forming toxins alpha hemolysin (Hla), Panton-Valentine leukocidin (PVL), leukocidin AB (LukAB), and the superantigens toxic shock syndrome toxin-1 and staphylococcal enterotoxins A and B. Immunization of mice and rabbits with IBT-V02 generated antibodies with strong neutralizing activity against toxins included in the vaccine, as well as cross-neutralizing activity against multiple related toxins, and protected against skin infections by several clinically relevant SA strains of USA100, USA300, and USA1000 clones. Efficacy of the vaccine was also shown in non-naïve mice pre-exposed to S. aureus. Furthermore, vaccination with IBT-V02 not only protected mice from a primary infection but also demonstrated lasting efficacy against a secondary infection, while prior challenge with the bacteria alone was unable to protect against recurrence. Serum transfer studies in a primary infection model showed that antibodies are primarily responsible for the protective response.


Assuntos
Reinfecção/prevenção & controle , Infecções Cutâneas Estafilocócicas/prevenção & controle , Vacinas Antiestafilocócicas/farmacologia , Staphylococcus aureus/imunologia , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Neutralizantes/sangue , Modelos Animais de Doenças , Feminino , Imunização , Imunogenicidade da Vacina , Masculino , Camundongos Endogâmicos BALB C , Coelhos , Reinfecção/imunologia , Reinfecção/microbiologia , Infecções Cutâneas Estafilocócicas/imunologia , Infecções Cutâneas Estafilocócicas/microbiologia , Vacinas Antiestafilocócicas/imunologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-31844012

RESUMO

Staphylococcus aureus is a major human pathogen that causes a wide range of infections by producing an arsenal of cytotoxins. We found that passive immunization with either a monoclonal antibody (MAb) neutralizing alpha-hemolysin or a broadly cross-reactive MAb neutralizing Panton-Valentine leukocidin, leukocidin ED, and gamma-hemolysins HlgAB and HlgCB conferred only partial protection, whereas the combination of those two MAbs conferred significant protection in a rabbit model of necrotizing pneumonia caused by the USA300 methicillin-resistant S. aureus epidemic clone.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Proteínas Hemolisinas/imunologia , Leucocidinas/uso terapêutico , Pneumonia Necrosante/tratamento farmacológico , Pneumonia Necrosante/imunologia , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/microbiologia , Animais , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/microbiologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Coelhos , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/patogenicidade
8.
Pigment Cell Melanoma Res ; 32(2): 224-236, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30019545

RESUMO

Ultraviolet radiation (UVR) has numerous effects on skin, including DNA damage, tanning, vitamin D synthesis, carcinogenesis, and immunomodulation. Keratinocytes containing damaged DNA secrete both α-melanocyte-stimulating hormone (α-MSH), which stimulates pigment production by melanocytes, and the opioid ß-endorphin, which can trigger addiction-like responses to UVR. The pigmentation (tanning) response is an adaptation that provides some delayed protection against further DNA damage and carcinogenesis, while the opioid response may be an evolutionary adaptation for promoting sun-seeking behavior to prevent vitamin D deficiency. Here, we review the pigmentation response to UVR, driven by melanocytic microphthalmia-associated transcription factor (MITF), and evidence for UVR-induced melanomagenesis and addiction. We also discuss potential applications of a novel approach to generate protective pigmentation in the absence of UVR (sunless tanning) using a topical small-molecule inhibitor of the salt-inducible kinase (SIK) family.


Assuntos
Comportamento Aditivo/patologia , Fator de Transcrição Associado à Microftalmia/metabolismo , Pigmentação da Pele/efeitos da radiação , Pele/patologia , Pele/efeitos da radiação , Raios Ultravioleta , Animais , Humanos , Melaninas/biossíntese
9.
Nat Protoc ; 13(11): 2615-2642, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30341435

RESUMO

Circularization for in vitro reporting of cleavage effects by sequencing (CIRCLE-seq) is a sensitive and unbiased method for defining the genome-wide activity (on-target and off-target) of CRISPR-Cas9 nucleases by selective sequencing of nuclease-cleaved genomic DNA (gDNA). Here, we describe a detailed experimental and analytical protocol for CIRCLE-seq. The principle of our method is to generate a library of circularized gDNA with minimized numbers of free ends. Highly purified gDNA circles are treated with CRISPR-Cas9 ribonucleoprotein complexes, and nuclease-linearized DNA fragments are then ligated to adapters for high-throughput sequencing. The primary advantages of CIRCLE-seq as compared with other in vitro methods for defining genome-wide genome editing activity are (i) high enrichment for sequencing nuclease-cleaved gDNA/low background, enabling sensitive detection with low sequencing depth requirements; and (ii) the fact that paired-end reads can contain complete information on individual nuclease cleavage sites, enabling use of CIRCLE-seq in species without high-quality reference genomes. The entire protocol can be completed in 2 weeks, including time for gRNA cloning, sequence verification, in vitro transcription, library preparation, and sequencing.


Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA Circular/genética , Edição de Genes/métodos , Sequenciamento de Nucleotídeos em Larga Escala/estatística & dados numéricos , Proteína 9 Associada à CRISPR/metabolismo , Linhagem Celular Tumoral , DNA Circular/metabolismo , Biblioteca Gênica , Genoma Humano , Humanos , Linfócitos/citologia , Linfócitos/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo
10.
Nature ; 561(7723): 416-419, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30209390

RESUMO

CRISPR-Cas genome-editing nucleases hold substantial promise for developing human therapeutic applications1-6 but identifying unwanted off-target mutations is important for clinical translation7. A well-validated method that can reliably identify off-targets in vivo has not been described to date, which means it is currently unclear whether and how frequently these mutations occur. Here we describe 'verification of in vivo off-targets' (VIVO), a highly sensitive strategy that can robustly identify the genome-wide off-target effects of CRISPR-Cas nucleases in vivo. We use VIVO and a guide RNA deliberately designed to be promiscuous to show that CRISPR-Cas nucleases can induce substantial off-target mutations in mouse livers in vivo. More importantly, we also use VIVO to show that appropriately designed guide RNAs can direct efficient in vivo editing in mouse livers with no detectable off-target mutations. VIVO provides a general strategy for defining and quantifying the off-target effects of gene-editing nucleases in whole organisms, thereby providing a blueprint to foster the development of therapeutic strategies that use in vivo gene editing.


Assuntos
Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Edição de Genes/normas , Genoma/genética , Mutação , Especificidade por Substrato/genética , Animais , Proteínas Associadas a CRISPR/genética , Feminino , Humanos , Mutação INDEL , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pró-Proteína Convertase 9/genética , Transgenes/genética
11.
Nat Methods ; 14(6): 607-614, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28459458

RESUMO

Sensitive detection of off-target effects is important for translating CRISPR-Cas9 nucleases into human therapeutics. In vitro biochemical methods for finding off-targets offer the potential advantages of greater reproducibility and scalability while avoiding limitations associated with strategies that require the culture and manipulation of living cells. Here we describe circularization for in vitro reporting of cleavage effects by sequencing (CIRCLE-seq), a highly sensitive, sequencing-efficient in vitro screening strategy that outperforms existing cell-based or biochemical approaches for identifying CRISPR-Cas9 genome-wide off-target mutations. In contrast to previously described in vitro methods, we show that CIRCLE-seq can be practiced using widely accessible next-generation sequencing technology and does not require reference genome sequences. Importantly, CIRCLE-seq can be used to identify off-target mutations associated with cell-type-specific single-nucleotide polymorphisms, demonstrating the feasibility and importance of generating personalized specificity profiles. CIRCLE-seq provides an accessible, rapid, and comprehensive method for identifying genome-wide off-target mutations of CRISPR-Cas9.


Assuntos
Sistemas CRISPR-Cas/genética , Mapeamento Cromossômico/métodos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Desoxirribonucleases/genética , Genoma/genética , Análise de Sequência de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
12.
Nat Biotechnol ; 34(8): 869-74, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27347757

RESUMO

The activities and genome-wide specificities of CRISPR-Cas Cpf1 nucleases are not well defined. We show that two Cpf1 nucleases from Acidaminococcus sp. BV3L6 and Lachnospiraceae bacterium ND2006 (AsCpf1 and LbCpf1, respectively) have on-target efficiencies in human cells comparable with those of the widely used Streptococcus pyogenes Cas9 (SpCas9). We also report that four to six bases at the 3' end of the short CRISPR RNA (crRNA) used to program Cpf1 nucleases are insensitive to single base mismatches, but that many of the other bases in this region of the crRNA are highly sensitive to single or double substitutions. Using GUIDE-seq and targeted deep sequencing analyses performed with both Cpf1 nucleases, we were unable to detect off-target cleavage for more than half of 20 different crRNAs. Our results suggest that AsCpf1 and LbCpf1 are highly specific in human cells.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sistemas CRISPR-Cas/genética , Endonucleases/genética , Endonucleases/metabolismo , Genoma Humano/genética , Pareamento Incorreto de Bases , Sítios de Ligação , Mapeamento Cromossômico/métodos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/fisiologia , Ativação Enzimática , Humanos , Ligação Proteica , Especificidade por Substrato
13.
Nature ; 529(7587): 490-5, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26735016

RESUMO

CRISPR-Cas9 nucleases are widely used for genome editing but can induce unwanted off-target mutations. Existing strategies for reducing genome-wide off-target effects of the widely used Streptococcus pyogenes Cas9 (SpCas9) are imperfect, possessing only partial or unproven efficacies and other limitations that constrain their use. Here we describe SpCas9-HF1, a high-fidelity variant harbouring alterations designed to reduce non-specific DNA contacts. SpCas9-HF1 retains on-target activities comparable to wild-type SpCas9 with >85% of single-guide RNAs (sgRNAs) tested in human cells. Notably, with sgRNAs targeted to standard non-repetitive sequences, SpCas9-HF1 rendered all or nearly all off-target events undetectable by genome-wide break capture and targeted sequencing methods. Even for atypical, repetitive target sites, the vast majority of off-target mutations induced by wild-type SpCas9 were not detected with SpCas9-HF1. With its exceptional precision, SpCas9-HF1 provides an alternative to wild-type SpCas9 for research and therapeutic applications. More broadly, our results suggest a general strategy for optimizing genome-wide specificities of other CRISPR-RNA-guided nucleases.


Assuntos
Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/fisiologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Endonucleases/metabolismo , Engenharia Genética , Genoma Humano/genética , Sequência de Bases , DNA/genética , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endonucleases/genética , Humanos , Mutação , Ligação Proteica , RNA/genética , Reprodutibilidade dos Testes , Análise de Sequência de DNA , Streptococcus pyogenes/enzimologia , Streptococcus pyogenes/genética , Especificidade por Substrato
14.
Nat Biotechnol ; 33(12): 1293-1298, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26524662

RESUMO

CRISPR-Cas9 nucleases target specific DNA sequences using a guide RNA but also require recognition of a protospacer adjacent motif (PAM) by the Cas9 protein. Although longer PAMs can potentially improve the specificity of genome editing, they limit the range of sequences that Cas9 orthologs can target. One potential strategy to relieve this restriction is to relax the PAM recognition specificity of Cas9. Here we used molecular evolution to modify the NNGRRT PAM of Staphylococcus aureus Cas9 (SaCas9). One variant we identified, referred to as KKH SaCas9, showed robust genome editing activities at endogenous human target sites with NNNRRT PAMs, thereby increasing SaCas9 targeting range by two- to fourfold. Using GUIDE-seq, we show that wild-type and KKH SaCas9 induce comparable numbers of off-target effects in human cells. Our strategy for evolving PAM specificity does not require structural information and therefore should be applicable to a wide range of Cas9 orthologs.

15.
Nature ; 523(7561): 481-5, 2015 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-26098369

RESUMO

Although CRISPR-Cas9 nucleases are widely used for genome editing, the range of sequences that Cas9 can recognize is constrained by the need for a specific protospacer adjacent motif (PAM). As a result, it can often be difficult to target double-stranded breaks (DSBs) with the precision that is necessary for various genome-editing applications. The ability to engineer Cas9 derivatives with purposefully altered PAM specificities would address this limitation. Here we show that the commonly used Streptococcus pyogenes Cas9 (SpCas9) can be modified to recognize alternative PAM sequences using structural information, bacterial selection-based directed evolution, and combinatorial design. These altered PAM specificity variants enable robust editing of endogenous gene sites in zebrafish and human cells not currently targetable by wild-type SpCas9, and their genome-wide specificities are comparable to wild-type SpCas9 as judged by GUIDE-seq analysis. In addition, we identify and characterize another SpCas9 variant that exhibits improved specificity in human cells, possessing better discrimination against off-target sites with non-canonical NAG and NGA PAMs and/or mismatched spacers. We also find that two smaller-size Cas9 orthologues, Streptococcus thermophilus Cas9 (St1Cas9) and Staphylococcus aureus Cas9 (SaCas9), function efficiently in the bacterial selection systems and in human cells, suggesting that our engineering strategies could be extended to Cas9s from other species. Our findings provide broadly useful SpCas9 variants and, more importantly, establish the feasibility of engineering a wide range of Cas9s with altered and improved PAM specificities.


Assuntos
Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Motivos de Nucleotídeos , Engenharia de Proteínas/métodos , Streptococcus pyogenes/enzimologia , Substituição de Aminoácidos/genética , Animais , Sistemas CRISPR-Cas , Linhagem Celular , Evolução Molecular Direcionada , Genoma/genética , Humanos , Mutação/genética , Staphylococcus aureus/enzimologia , Streptococcus thermophilus/enzimologia , Especificidade por Substrato/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética
16.
Front Microbiol ; 6: 27, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25713562

RESUMO

The extracytoplasmic functioning sigma factor σ(E) is known to play an essential role for Salmonella enterica serovar Typhimurium to survive and proliferate in macrophages and mice. However, its regulatory network is not well-characterized, especially during infection. Here we used microarray to identify genes regulated by σ(E) in Salmonella grown in three conditions: a nutrient-rich condition and two others that mimic early and late intracellular infection. We found that in each condition σ(E) regulated different sets of genes, and notably, several global regulators. When comparing nutrient-rich and infection-like conditions, large changes were observed in the expression of genes involved in Salmonella pathogenesis island (SPI)-1 type-three secretion system (TTSS), SPI-2 TTSS, protein synthesis, and stress responses. In total, the expression of 58% of Salmonella genes was affected by σ(E) in at least one of the three conditions. An important finding is that σ(E) up-regulates SPI-2 genes, which are essential for Salmonella intracellular survival, by up-regulating SPI-2 activator ssrB expression at the early stage of infection and down-regulating SPI-2 repressor hns expression at a later stage. Moreover, σ(E) is capable of countering the silencing of H-NS, releasing the expression of SPI-2 genes. This connection between σ(E) and SPI-2 genes, combined with the global regulatory effect of σ(E), may account for the lethality of rpoE-deficient Salmonella in murine infection.

17.
Nat Biotechnol ; 33(2): 187-197, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25513782

RESUMO

CRISPR RNA-guided nucleases (RGNs) are widely used genome-editing reagents, but methods to delineate their genome-wide, off-target cleavage activities have been lacking. Here we describe an approach for global detection of DNA double-stranded breaks (DSBs) introduced by RGNs and potentially other nucleases. This method, called genome-wide, unbiased identification of DSBs enabled by sequencing (GUIDE-seq), relies on capture of double-stranded oligodeoxynucleotides into DSBs. Application of GUIDE-seq to 13 RGNs in two human cell lines revealed wide variability in RGN off-target activities and unappreciated characteristics of off-target sequences. The majority of identified sites were not detected by existing computational methods or chromatin immunoprecipitation sequencing (ChIP-seq). GUIDE-seq also identified RGN-independent genomic breakpoint 'hotspots'. Finally, GUIDE-seq revealed that truncated guide RNAs exhibit substantially reduced RGN-induced, off-target DSBs. Our experiments define the most rigorous framework for genome-wide identification of RGN off-target effects to date and provide a method for evaluating the safety of these nucleases before clinical use.


Assuntos
Sistemas CRISPR-Cas/genética , Quebras de DNA de Cadeia Dupla , RNA Guia de Cinetoplastídeos/genética , Linhagem Celular , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Oligodesoxirribonucleotídeos/genética , Edição de RNA/genética
18.
BMC Public Health ; 14: 265, 2014 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-24649918

RESUMO

BACKGROUND: The success of HIV care strongly depends upon skills of the healthcare worker. Vietnam has a punitive history towards HIV and even though this has changed recently, persons living with HIV are still facing discrimination. The objective of this paper is to assess the gaps in knowledge of HIV and factors associated with discriminatory attitudes towards persons living with HIV among medical students in order to improve medical training. METHODS: In a cross-sectional quantitative study using a structured questionnaire, 200 final-year medical students at Hanoi Medical University were approached for data collection in May of 2012. Descriptive statistics (percentages) were used to present four HIV knowledge tests. Linear regression models were examined to highlight factors that are associated with general attitudes towards HIV and attitudes towards HIV in a clinical setting. RESULTS: Although students performed overall well in the knowledge category of HIV discrimination and stigma, there were several gaps in knowledge of HIV, including the categories of HIV-related basic sciences, prevention, and care and treatment. Knowledge of stigma and discrimination was a significant positive predictor of General non-prejudicial attitude to HIV and AIDS (ß=0.186, P<0.01) and Non-discriminatory attitude to HIV and AIDS at work (ß=0.188, P<0.01). Training on methadone treatment was found to be a significant positive predictor (ß=0.168, P<0.05) while family size was negatively associated (ß=-0.170, P<0.05) with General non-prejudicial attitude to HIV and AIDS. CONCLUSIONS: The study suggests a need for incorporating HIV training into the core curricula for medical students. As persons who inject drugs carry a proportionately high burden of HIV in Vietnam, it is also important to include methadone training for students.


Assuntos
Atitude do Pessoal de Saúde , Atitude Frente a Saúde , Infecções por HIV/psicologia , Estudantes de Medicina/psicologia , Estudantes de Medicina/estatística & dados numéricos , Adulto , Estudos Transversais , Feminino , Humanos , Masculino , Estigma Social , Inquéritos e Questionários , Universidades , Vietnã , Adulto Jovem
19.
Mol Nutr Food Res ; 57(11): 1901-7, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23934760

RESUMO

SCOPE: Energy deficit is a common characteristic of neurodegenerative disorders, including Alzheimer's disease. Adenosine monophosphate activated protein kinase (AMPK) is a key enzyme maintaining energy balance by regulating the cellular uptake of glucose, ß-oxidation of fatty acids, and expression of glucose transporter 4. Since resveratrol has been shown to increase the activity of AMPK, we hypothesized that it might influence energy metabolism in a model neuron-like cell line, murine Neuro2a cells. METHODS AND RESULTS: Resveratrol caused an elevation of adenosine triphosphate (ATP) and guanosine triphosphate (GTP) in a dose-dependent manner. The highest ATP and GTP levels achieved by treatment with resveratrol were 70.3 ± 8.2 nmol/mg protein (1.9-fold of control) and 27.2 ± 4.0 nmol/mg protein (1.7-fold of control), respectively, when cells were treated with 100 µM resveratrol for 6 h. Interestingly, increases in the total sum of all adenine nucleotides were found upon addition of resveratrol. Despite these increases in ATP, GTP, and the total adenine nucleotide pool, resveratrol treatment led to a decrease in glucose consumption and lactate release, suggesting that resveratrol does not increase energy production (e.g. via AMPK kinase activation) but rather inhibits energy-consuming processes. CONCLUSION: Resveratrol increases the levels of ATP and GTP, but without creating an additional glucose demand.


Assuntos
Trifosfato de Adenosina/metabolismo , Antioxidantes/farmacologia , Guanosina Trifosfato/metabolismo , Neurônios/efeitos dos fármacos , Estilbenos/farmacologia , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Metabolismo Energético , Ácidos Graxos/metabolismo , Glucose/metabolismo , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Ácido Láctico/metabolismo , Camundongos , Neurônios/metabolismo , Resveratrol
20.
J Bacteriol ; 195(10): 2119-25, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23396917

RESUMO

Salmonella virulence is largely mediated by two type III secretion systems (T3SS) that deliver effector proteins from the bacterium to a host cell; however, the secretion signal is poorly defined. Effector N termini are thought to contain the signal, but they lack homology, possess no identifiable motif, and adopt intrinsically disordered structures. Alternative studies suggest that RNA-encoded signals may also be recognized and that they can be located in the 5' untranslated leader sequence. We began our study by establishing the minimum sequence required for reporter translocation. Untranslated leader sequences predicted from 42 different Salmonella effector proteins were fused to the adenylate cyclase reporter (CyaA'), and each of them was tested for protein injection into J774 macrophages. RNA sequences derived from five effectors, gtgA, cigR, gogB, sseL, and steD, were sufficient for CyaA' translocation into host cells. To determine the mechanism of signal recognition, we identified proteins that bound specifically to the gtgA RNA. One of the unique proteins identified was Hfq. Hfq had no effect upon the translocation of full-length CigR and SteD, but injection of intact GtgA, GogB, and SseL was abolished in an hfq mutant, confirming the importance of Hfq. Our results demonstrated that the Salmonella pathogenicity island 2 (SPI-2) T3SS assembled into a functional apparatus independently of Hfq. Since particular effectors required Hfq for translocation, Hfq-RNA complexes may participate in signal recognition.


Assuntos
Proteínas de Bactérias/metabolismo , Ilhas Genômicas/genética , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Proteínas de Bactérias/genética , Eletroforese em Gel de Poliacrilamida , Regulação Bacteriana da Expressão Gênica/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Conformação de Ácido Nucleico , RNA Bacteriano/química , RNA Bacteriano/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...