Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Trends Biotechnol ; 41(7): 860-874, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36669947

RESUMO

Ocean health is faltering, its capability for regeneration and renewal being eroded by a steady pulse of anthropomorphic impacts. Plastic waste has infiltrated all ocean biomes, climate change threatens coral reefs with extinction, and eutrophication has unleashed vast algal blooms. In the face of these challenges, synthetic biology approaches may hold untapped solutions to mitigate adverse effects, repair ecosystems, and put us on a path towards sustainable stewardship of our planet. Leveraging synthetic biology tools would enable innovative engineering approaches to augment the natural adaptive capacity of ocean biological systems to cope with the swiftness of human-induced change. Here, we present a framework for developing synthetic biology solutions for the challenges of plastic pollution, coral bleaching, and harmful algal blooms.


Assuntos
Antozoários , Ecossistema , Animais , Humanos , Biologia Sintética , Recifes de Corais , Mudança Climática , Oceanos e Mares
2.
Nat Rev Mater ; 7(11): 887-907, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910814

RESUMO

Wearable devices provide an alternative pathway to clinical diagnostics by exploiting various physical, chemical and biological sensors to mine physiological (biophysical and/or biochemical) information in real time (preferably, continuously) and in a non-invasive or minimally invasive manner. These sensors can be worn in the form of glasses, jewellery, face masks, wristwatches, fitness bands, tattoo-like devices, bandages or other patches, and textiles. Wearables such as smartwatches have already proved their capability for the early detection and monitoring of the progression and treatment of various diseases, such as COVID-19 and Parkinson disease, through biophysical signals. Next-generation wearable sensors that enable the multimodal and/or multiplexed measurement of physical parameters and biochemical markers in real time and continuously could be a transformative technology for diagnostics, allowing for high-resolution and time-resolved historical recording of the health status of an individual. In this Review, we examine the building blocks of such wearable sensors, including the substrate materials, sensing mechanisms, power modules and decision-making units, by reflecting on the recent developments in the materials, engineering and data science of these components. Finally, we synthesize current trends in the field to provide predictions for the future trajectory of wearable sensors.

3.
Nat Biotechnol ; 40(4): 539-545, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34711989

RESUMO

The ability to control translation of endogenous or exogenous RNAs in eukaryotic cells would facilitate a variety of biotechnological applications. Current strategies are limited by low fold changes in transgene output and the size of trigger RNAs (trRNAs). Here we introduce eukaryotic toehold switches (eToeholds) as modular riboregulators. eToeholds contain internal ribosome entry site sequences and form inhibitory loops in the absence of a specific trRNA. When the trRNA is present, eToeholds anneal to it, disrupting the inhibitory loops and allowing translation. Through optimization of RNA annealing, we achieved up to 16-fold induction of transgene expression in mammalian cells. We demonstrate that eToeholds can discriminate among viral infection status, presence or absence of gene expression and cell types based on the presence of exogenous or endogenous RNA transcripts.


Assuntos
Biossíntese de Proteínas , RNA , Animais , Mamíferos/genética , Biossíntese de Proteínas/genética , RNA Viral/genética
5.
Sci Adv ; 7(32)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34362739

RESUMO

The COVID-19 pandemic highlights the need for diagnostics that can be rapidly adapted and deployed in a variety of settings. Several SARS-CoV-2 variants have shown worrisome effects on vaccine and treatment efficacy, but no current point-of-care (POC) testing modality allows their specific identification. We have developed miSHERLOCK, a low-cost, CRISPR-based POC diagnostic platform that takes unprocessed patient saliva; extracts, purifies, and concentrates viral RNA; performs amplification and detection reactions; and provides fluorescent visual output with only three user actions and 1 hour from sample input to answer out. miSHERLOCK achieves highly sensitive multiplexed detection of SARS-CoV-2 and mutations associated with variants B.1.1.7, B.1.351, and P.1. Our modular system enables easy exchange of assays to address diverse user needs and can be rapidly reconfigured to detect different viruses and variants of concern. An adjunctive smartphone application enables output quantification, automated interpretation, and the possibility of remote, distributed result reporting.

6.
Nat Biotechnol ; 39(11): 1366-1374, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34183860

RESUMO

Integrating synthetic biology into wearables could expand opportunities for noninvasive monitoring of physiological status, disease states and exposure to pathogens or toxins. However, the operation of synthetic circuits generally requires the presence of living, engineered bacteria, which has limited their application in wearables. Here we report lightweight, flexible substrates and textiles functionalized with freeze-dried, cell-free synthetic circuits, including CRISPR-based tools, that detect metabolites, chemicals and pathogen nucleic acid signatures. The wearable devices are activated upon rehydration from aqueous exposure events and report the presence of specific molecular targets by colorimetric changes or via an optical fiber network that detects fluorescent and luminescent outputs. The detection limits for nucleic acids rival current laboratory methods such as quantitative PCR. We demonstrate the development of a face mask with a lyophilized CRISPR sensor for wearable, noninvasive detection of SARS-CoV-2 at room temperature within 90 min, requiring no user intervention other than the press of a button.


Assuntos
Técnicas Biossensoriais/instrumentação , COVID-19 , SARS-CoV-2/isolamento & purificação , Biologia Sintética , Dispositivos Eletrônicos Vestíveis , COVID-19/diagnóstico , Humanos , Têxteis
7.
Proc Natl Acad Sci U S A ; 117(41): 25722-25731, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32958655

RESUMO

Asymptomatic carriers of Plasmodium parasites hamper malaria control and eradication. Achieving malaria eradication requires ultrasensitive diagnostics for low parasite density infections (<100 parasites per microliter blood) that work in resource-limited settings (RLS). Sensitive point-of-care diagnostics are also lacking for nonfalciparum malaria, which is characterized by lower density infections and may require additional therapy for radical cure. Molecular methods, such as PCR, have high sensitivity and specificity, but remain high-complexity technologies impractical for RLS. Here we describe a CRISPR-based diagnostic for ultrasensitive detection and differentiation of Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale, and Plasmodium malariae, using the nucleic acid detection platform SHERLOCK (specific high-sensitivity enzymatic reporter unlocking). We present a streamlined, field-applicable, diagnostic comprised of a 10-min SHERLOCK parasite rapid extraction protocol, followed by SHERLOCK for 60 min for Plasmodium species-specific detection via fluorescent or lateral flow strip readout. We optimized one-pot, lyophilized, isothermal assays with a simplified sample preparation method independent of nucleic acid extraction, and showed that these assays are capable of detection below two parasites per microliter blood, a limit of detection suggested by the World Health Organization. Our P. falciparum and P. vivax assays exhibited 100% sensitivity and specificity on clinical samples (5 P. falciparum and 10 P. vivax samples). This work establishes a field-applicable diagnostic for ultrasensitive detection of asymptomatic carriers as well as a rapid point-of-care clinical diagnostic for nonfalciparum malaria species and low parasite density P. falciparum infections.


Assuntos
Portador Sadio/diagnóstico , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Técnicas e Procedimentos Diagnósticos , Técnicas Genéticas , Malária/diagnóstico , Plasmodium/genética , Plasmodium/isolamento & purificação , Portador Sadio/parasitologia , Humanos , Malária/parasitologia , Plasmodium/classificação , Plasmodium/fisiologia
8.
Nat Protoc ; 15(9): 3030-3063, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32807909

RESUMO

Materials that sense and respond to biological signals in their environment have a broad range of potential applications in drug delivery, medical devices and diagnostics. Nucleic acids are important biological cues that encode information about organismal identity and clinically relevant phenotypes such as drug resistance. We recently developed a strategy to design nucleic acid-responsive materials using the CRISPR-associated nuclease Cas12a as a user-programmable sensor and material actuator. This approach improves on the sensitivity of current DNA-responsive materials while enabling their rapid repurposing toward new sequence targets. Here, we provide a comprehensive resource for the design, synthesis and actuation of CRISPR-responsive hydrogels. First, we provide guidelines for the synthesis of Cas12a guide RNAs (gRNAs) for in vitro applications. We then outline methods for the synthesis of both polyethylene glycol-DNA (PEG-DNA) and polyacrylamide-DNA (PA-DNA) hydrogels, as well as their controlled degradation using Cas12a for the release of cargos, including small molecules, enzymes, nanoparticles and living cells within hours. Finally, we detail the design and assembly of microfluidic paper-based devices that use Cas12a-sensitive hydrogels to convert DNA inputs into a variety of visual and electronic readouts for use in diagnostics. Following the initial validation of the gRNA and Cas12a components (1 d), the synthesis and testing of either PEG-DNA or PA-DNA hydrogels require 3-4 d of laboratory time. Optional extensions, including the release of primary human cells or the design of the paper-based diagnostic, require an additional 2-3 d each.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Técnicas e Procedimentos Diagnósticos , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Materiais Inteligentes/química , Resinas Acrílicas/química , Proteínas de Bactérias/metabolismo , Sequência de Bases , Proteínas Associadas a CRISPR/metabolismo , DNA/química , DNA/genética , Endodesoxirribonucleases/metabolismo , Humanos , Células K562 , Polietilenoglicóis/química , RNA Guia de Cinetoplastídeos/genética
9.
Nat Biotechnol ; 38(12): 1451-1459, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32632301

RESUMO

Lack of access to safe drinking water is a global problem, and methods to reliably and easily detect contaminants could be transformative. We report the development of a cell-free in vitro transcription system that uses RNA Output Sensors Activated by Ligand Induction (ROSALIND) to detect contaminants in water. A combination of highly processive RNA polymerases, allosteric protein transcription factors and synthetic DNA transcription templates regulates the synthesis of a fluorescence-activating RNA aptamer. The presence of a target contaminant induces the transcription of the aptamer, and a fluorescent signal is produced. We apply ROSALIND to detect a range of water contaminants, including antibiotics, small molecules and metals. We also show that adding RNA circuitry can invert responses, reduce crosstalk and improve sensitivity without protein engineering. The ROSALIND system can be freeze-dried for easy storage and distribution, and we apply it in the field to test municipal water supplies, demonstrating its potential use for monitoring water quality.


Assuntos
Técnicas Biossensoriais/métodos , Poluentes Químicos da Água/análise , Aptâmeros de Nucleotídeos/metabolismo , Fluorescência , Liofilização , Genes Reporter , Ligantes , Metais/metabolismo , RNA/metabolismo , Bibliotecas de Moléculas Pequenas/química , Fatores de Transcrição/metabolismo , Transcrição Gênica
10.
Science ; 365(6455): 780-785, 2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31439791

RESUMO

Stimuli-responsive materials activated by biological signals play an increasingly important role in biotechnology applications. We exploit the programmability of CRISPR-associated nucleases to actuate hydrogels containing DNA as a structural element or as an anchor for pendant groups. After activation by guide RNA-defined inputs, Cas12a cleaves DNA in the gels, thereby converting biological information into changes in material properties. We report four applications: (i) branched poly(ethylene glycol) hydrogels releasing DNA-anchored compounds, (ii) degradable polyacrylamide-DNA hydrogels encapsulating nanoparticles and live cells, (iii) conductive carbon-black-DNA hydrogels acting as degradable electrical fuses, and (iv) a polyacrylamide-DNA hydrogel operating as a fluidic valve with an electrical readout for remote signaling. These materials allow for a range of in vitro applications in tissue engineering, bioelectronics, and diagnostics.


Assuntos
Proteínas de Bactérias/química , Materiais Biocompatíveis/química , Técnicas Biossensoriais , Proteínas Associadas a CRISPR/química , DNA/química , Endodesoxirribonucleases/química , Hidrogéis/química , Patologia Molecular , Engenharia Tecidual , Resinas Acrílicas/química , Células/química , Reagentes de Ligações Cruzadas/química , Clivagem do DNA , DNA de Cadeia Simples/química , Dispositivos Lab-On-A-Chip , Nanopartículas/química , Permeabilidade , Polietilenoglicóis/química
11.
ACS Synth Biol ; 8(5): 1001-1009, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-30925042

RESUMO

Recent advances in synthetic biology have resulted in biological technologies with the potential to reshape the way we understand and treat human disease. Educating students about the biology and ethics underpinning these technologies is critical to empower them to make informed future policy decisions regarding their use and to inspire the next generation of synthetic biologists. However, hands-on, educational activities that convey emerging synthetic biology topics can be difficult to implement due to the expensive equipment and expertise required to grow living cells. We present BioBits Health, an educational kit containing lab activities and supporting curricula for teaching antibiotic resistance mechanisms and CRISPR-Cas9 gene editing in high school classrooms. This kit links complex biological concepts to visual, fluorescent readouts in user-friendly freeze-dried cell-free reactions. BioBits Health represents a set of educational resources that promises to encourage teaching of cutting-edge, health-related synthetic biology topics in classrooms and other nonlaboratory settings.


Assuntos
Engenharia Genética , Biologia Sintética/educação , Sistemas CRISPR-Cas/genética , Sistema Livre de Células , Resistência Microbiana a Medicamentos/genética , Edição de Genes/métodos , Transferência Genética Horizontal , Humanos , Imagem Óptica , Biologia Sintética/métodos
12.
Sci Adv ; 4(8): eaat5105, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30083608

RESUMO

Hands-on demonstrations greatly enhance the teaching of science, technology, engineering, and mathematics (STEM) concepts and foster engagement and exploration in the sciences. While numerous chemistry and physics classroom demonstrations exist, few biology demonstrations are practical and accessible due to the challenges and concerns of growing living cells in classrooms. We introduce BioBits™ Explorer, a synthetic biology educational kit based on shelf-stable, freeze-dried, cell-free (FD-CF) reactions, which are activated by simply adding water. The FD-CF reactions engage the senses of sight, smell, and touch with outputs that produce fluorescence, fragrances, and hydrogels, respectively. We introduce components that can teach tunable protein expression, enzymatic reactions, biomaterial formation, and biosensors using RNA switches, some of which represent original FD-CF outputs that expand the toolbox of cell-free synthetic biology. The BioBits™ Explorer kit enables hands-on demonstrations of cutting-edge science that are inexpensive and easy to use, circumventing many current barriers for implementing exploratory biology experiments in classrooms.


Assuntos
Técnicas Biossensoriais/métodos , Fenômenos Fisiológicos Celulares , Enzimas/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Musa/química , Odorantes/análise , Biologia Sintética/educação , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Ensino
13.
Sci Adv ; 4(8): eaat5107, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30083609

RESUMO

Synthetic biology offers opportunities for experiential educational activities at the intersection of the life sciences, engineering, and design. However, implementation of hands-on biology activities in classrooms is challenging because of the need for specialized equipment and expertise to grow living cells. We present BioBits™ Bright, a shelf-stable, just-add-water synthetic biology education kit with easy visual outputs enabled by expression of fluorescent proteins in freeze-dried, cell-free reactions. We introduce activities and supporting curricula for teaching the central dogma, tunable protein expression, and design-build-test cycles and report data generated by K-12 teachers and students. We also develop inexpensive incubators and imagers, resulting in a comprehensive kit costing

Assuntos
Técnicas Biossensoriais/métodos , Fenômenos Fisiológicos Celulares , Genes Sintéticos , Proteínas Luminescentes/metabolismo , Biologia Sintética/educação , Ensino
14.
ACS Synth Biol ; 7(6): 1640-1650, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29791796

RESUMO

The rapidly growing field of microbiome research presents a need for better methods of monitoring gut microbes in vivo with high spatial and temporal resolution. We report a method of tracking microbes in vivo within the gastrointestinal tract by programming them to incorporate nonstandard amino acids (NSAA) and labeling them via click chemistry. Using established machinery constituting an orthogonal translation system (OTS), we engineered Escherichia coli to incorporate p-azido-l-phenylalanine (pAzF) in place of the UAG (amber) stop codon. We also introduced a mutant gene encoding for a cell surface protein (CsgA) that was altered to contain an in-frame UAG codon. After pAzF incorporation and extracellular display, the engineered strains could be covalently labeled via copper-free click reaction with a Cy5 dye conjugated to the dibenzocyclooctyl (DBCO) group. We confirmed the functionality of the labeling strategy in vivo using a murine model. Labeling of the engineered strain could be observed using oral administration of the dye to mice several days after colonization of the gastrointestinal tract. This work sets the foundation for the development of in vivo tracking microbial strategies that may be compatible with noninvasive imaging modalities and are capable of longitudinal spatiotemporal monitoring of specific microbial populations.


Assuntos
Azidas/metabolismo , Escherichia coli/genética , Microrganismos Geneticamente Modificados , Fenilalanina/análogos & derivados , Biologia Sintética/métodos , Administração Oral , Animais , Carbocianinas/administração & dosagem , Carbocianinas/química , Química Click , Códon de Terminação , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Corantes Fluorescentes/administração & dosagem , Corantes Fluorescentes/química , Camundongos Endogâmicos C57BL , Mutação , Fenilalanina/genética , Fenilalanina/metabolismo , Probióticos
15.
Sci Rep ; 8(1): 3475, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29472619

RESUMO

Extracellular appendages play a significant role in mediating communication between bacteria and their host. Curli fibers are a class of bacterial fimbria that is highly amenable to engineering. We demonstrate the use of engineered curli fibers to rationally program interactions between bacteria and components of the mucosal epithelium. Commensal E. coli strains were engineered to produce recombinant curli fibers fused to the trefoil family of human cytokines. Biofilms formed from these strains bound more mucins than those producing wild-type curli fibers, and modulated mucin rheology as well. When treated with bacteria producing the curli-trefoil fusions mammalian cells behaved identically in terms of their migration behavior as when they were treated with the corresponding soluble trefoil factors. Overall, this demonstrates the potential utility of curli fibers as a scaffold for the display of bioactive domains and an untapped approach to rationally modulating host-microbe interactions using bacterial matrix proteins.


Assuntos
Escherichia coli/genética , Fímbrias Bacterianas/genética , Interações Hospedeiro-Patógeno/genética , Engenharia de Proteínas , Aderência Bacteriana/genética , Biofilmes/crescimento & desenvolvimento , Escherichia coli/química , Fímbrias Bacterianas/química , Regulação Bacteriana da Expressão Gênica/genética , Humanos
16.
Adv Mater ; 30(19): e1704847, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29430725

RESUMO

Vast potential exists for the development of novel, engineered platforms that manipulate biology for the production of programmed advanced materials. Such systems would possess the autonomous, adaptive, and self-healing characteristics of living organisms, but would be engineered with the goal of assembling bulk materials with designer physicochemical or mechanical properties, across multiple length scales. Early efforts toward such engineered living materials (ELMs) are reviewed here, with an emphasis on engineered bacterial systems, living composite materials which integrate inorganic components, successful examples of large-scale implementation, and production methods. In addition, a conceptual exploration of the fundamental criteria of ELM technology and its future challenges is presented. Cradled within the rich intersection of synthetic biology and self-assembling materials, the development of ELM technologies allows the power of biology to be leveraged to grow complex structures and objects using a palette of bio-nanomaterials.


Assuntos
Materiais Biocompatíveis/química , Bactérias , Nanoestruturas
17.
ACS Synth Biol ; 6(10): 1841-1850, 2017 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-28737385

RESUMO

Synthetic biology approaches to bioremediation are a key sustainable strategy to leverage the self-replicating and programmable aspects of biology for environmental stewardship. The increasing spread of anthropogenic mercury pollution into our habitats and food chains is a pressing concern. Here, we explore the use of programmed bacterial biofilms to aid in the sequestration of mercury. We demonstrate that by integrating a mercury-responsive promoter and an operon encoding a mercury-absorbing self-assembling extracellular protein nanofiber, we can engineer bacteria that can detect and sequester toxic Hg2+ ions from the environment. This work paves the way for the development of on-demand biofilm living materials that can operate autonomously as heavy-metal absorbents.


Assuntos
Mercúrio/metabolismo , Biologia Sintética/métodos , Amiloide/metabolismo , Biodegradação Ambiental , Biofilmes , Engenharia de Proteínas/métodos
18.
Biochem Soc Trans ; 45(3): 585-597, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28620023

RESUMO

Bottom-up fabrication of nanoscale materials has been a significant focus in materials science for expanding our technological frontiers. This assembly concept, however, is old news to biology - all living organisms fabricate themselves using bottom-up principles through a vast self-organizing system of incredibly complex biomolecules, a marvelous dynamic that we are still attempting to unravel. Can we use what we have gleaned from biology thus far to illuminate alternative strategies for designer nanomaterial manufacturing? In the present review article, new synthetic biology efforts toward using bacterial biofilms as platforms for the synthesis and secretion of programmable nanomaterials are described. Particular focus is given to self-assembling functional amyloids found in bacterial biofilms as re-engineerable modular nanomolecular components. Potential applications and existing challenges for this technology are also explored. This novel approach for repurposing biofilm systems will enable future technologies for using engineered living systems to grow artificial nanomaterials.


Assuntos
Fenômenos Fisiológicos Bacterianos , Biofilmes , Nanoestruturas , Biologia Sintética , Bactérias/metabolismo
19.
ChemCatChem ; 9(23): 4328-4333, 2017 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-30519367

RESUMO

Cell-free biocatalysis systems offer many benefits for chemical manufacturing, but their widespread applicability is hindered by high costs associated with enzyme purification, modification, and immobilization on solid substrates, in addition to the cost of the material substrates themselves. Herein, we report a "bootstrapped" biocatalysis substrate material that is produced directly in bacterial culture and is derived from biofilm matrix proteins, which self-assemble into a nanofibrous mesh. We demonstrate that this material can simultaneously purify and immobilize multiple enzymes site specifically and directly from crude cell lysates by using a panel of genetically programmed, mutually orthogonal conjugation domains. We further demonstrate the utility of the technique in a bienzymatic stereoselective reduction coupled with a cofactor recycling scheme. The domains allow for several cycles of selective removal and replacement of enzymes under mild conditions to regenerate the catalyst system.

20.
ACS Biomater Sci Eng ; 3(5): 733-741, 2017 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-33440494

RESUMO

As interest in using proteins to assemble functional, biocompatible, and environmentally friendly materials is growing, developing scalable protocols for producing recombinant proteins with customized functions coupled to straightforward fabrication processes is becoming crucial. Here, we use E. coli bacteria to produce amyloid protein nanofibers that are key constituents of the biofilm extracellular matrix and show that protein nanofiber aggregates can be purified using a fast and easily accessible vacuum filtration procedure. With their extreme resistance to heat, detergents, solvents, and denaturing agents, engineered curli nanofibers remain functional throughout the rigorous processing and can be used to assemble macroscopic materials directly from broth culture. As a demonstration, we show that engineered curli nanofibers can be fabricated into self-standing films while maintaining the functionality of various fused domains that confer new specific binding activity to the material. We also demonstrate that purified curli fibers can be disassembled, reassembled into thin films, and recycled for further materials processing. Our scalable approach, which combines established purification techniques for amyloid fibers, is applicable to a new class of recombinant amyloid proteins whose sequence can be easily tailored for diverse applications through genetic engineering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...