Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(17): eadd6868, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37115927

RESUMO

The thermo-mechanical response of shock-initiated energetic materials (EMs) is highly influenced by their microstructures, presenting an opportunity to engineer EM microstructures in a "materials-by-design" framework. However, the current design practice is limited, as a large ensemble of simulations is required to construct the complex EM structure-property-performance linkages. We present the physics-aware recurrent convolutional (PARC) neural network, a deep learning algorithm capable of learning the mesoscale thermo-mechanics of EM from a modest number of high-resolution direct numerical simulations (DNS). Validation results demonstrated that PARC could predict the themo-mechanical response of shocked EMs with comparable accuracy to DNS but with notably less computation time. The physics-awareness of PARC enhances its modeling capabilities and generalizability, especially when challenged in unseen prediction scenarios. We also demonstrate that visualizing the artificial neurons at PARC can shed light on important aspects of EM thermos-mechanics and provide an additional lens for conceptualizing EM.

2.
Sci Rep ; 12(1): 9034, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35641549

RESUMO

For material modeling and discovery, synthetic microstructures play a critical role as digital twins. They provide stochastic samples upon which direct numerical simulations can be conducted to populate material databases. A large ensemble of simulation data on synthetic microstructures may provide supplemental data to inform and refine macroscopic material models, which might not be feasible from physical experiments alone. However, synthesizing realistic microstructures with realistic microstructural attributes is highly challenging. Thus, it is often oversimplified via rough approximations that may yield an inaccurate representation of the physical world. Here, we propose a novel deep learning method that can synthesize realistic three-dimensional microstructures with controlled structural properties using the combination of generative adversarial networks (GAN) and actor-critic (AC) reinforcement learning. The GAN-AC combination enables the generation of microstructures that not only resemble the appearances of real specimens but also yield user-defined physical quantities of interest (QoI). Our validation experiments confirm that the properties of synthetic microstructures generated by the GAN-AC framework are within a 5% error margin with respect to the target values. The scientific contribution of this paper resides in the novel design of the GAN-AC microstructure generator and the mathematical and algorithmic foundations therein. The proposed method will have a broad and substantive impact on the materials community by providing lenses for analyzing structure-property-performance linkages and for implementing the notion of 'materials-by-design'.


Assuntos
Meios de Comunicação , Simulação por Computador , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA