Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 14(21): 4914-4922, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37202741

RESUMO

Myosin X forms an antiparallel dimer and moves processively on actin bundles. How the antiparallel dimer affects the stepping mechanism of myosin X remains elusive. Here, we generated several chimeras using domains of myosin V and X and performed single-molecule motility assays. We found that the chimera containing the motor domain from myosin V and the lever arm and antiparallel coiled-coil domain from myosin X has multiple forward step sizes and moves processively, similar to full-length myosin X. The chimera containing the motor domain and lever arm from myosin X and the parallel coiled-coil from myosin V takes steps of ∼40 nm at lower ATP concentrations but was nonprocessive at higher ATP concentrations. Furthermore, mutant myosin X with four mutations in the antiparallel coiled-coil domain failed to dimerize and was nonprocessive. These results imply that the antiparallel coiled-coil domain is necessary for multiple forward step sizes of myosin X.


Assuntos
Miosina Tipo V , Miosina Tipo V/genética , Miosina Tipo V/metabolismo , Domínios Proteicos , Dimerização , Trifosfato de Adenosina
2.
Nano Lett ; 21(18): 7479-7485, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34491760

RESUMO

Many biological processes employ mechanisms involving the locations and interactions of multiple components. Given that most biological processes occur in three dimensions, the simultaneous measurement of three-dimensional locations and interactions is necessary. However, the simultaneous three-dimensional precise localization and measurement of interactions in real time remains challenging. Here, we report a new microscopy technique to localize two spectrally distinct particles in three dimensions with an accuracy (2.35σ) of tens of nanometers with an exposure time of 100 ms and to measure their real-time interactions using fluorescence resonance energy transfer (FRET) simultaneously. Using this microscope, we tracked two distinct vesicles containing t-SNAREs or v-SNARE in three dimensions and observed FRET simultaneously during single-vesicle fusion in real time, revealing the nanoscale motion and interactions of single vesicles in vesicle fusion. Thus, this study demonstrates that our microscope can provide detailed information about real-time three-dimensional nanoscale locations, motion, and interactions in biological processes.


Assuntos
Fenômenos Biológicos , Transferência Ressonante de Energia de Fluorescência , Fusão de Membrana , Microscopia , Proteínas SNARE
3.
Artigo em Inglês | MEDLINE | ID: mdl-32081426

RESUMO

Myosin X (Myo10) has several unique design features including dimerization via an anti-parallel coiled coil and a long lever arm, which allow it to preferentially move on actin bundles. To understand the stepping behavior of single Myo10 on actin bundles, we labeled two heads of Myo10 dimers with different fluorophores. Unlike previously described for myosin V (Myo5) and VI (Myo6), which display alternating hand-over-hand stepping, Myo10 frequently took near simultaneous steps of both heads, and less frequently, 2-3 steps of one head before the other head stepped. We suggest that this behavior results from the unusual kinetic features of Myo10, in conjunction with the structural properties of the motor domain/lever arm, which will favor movement on actin bundles rather than on single filaments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...