Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 793, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951146

RESUMO

Brown and brown-like adipose tissues have attracted significant attention for their role in metabolism and therapeutic potential in diabetes and obesity. Despite compelling evidence of an interplay between adipocytes and lymphocytes, the involvement of these tissues in immune responses remains largely unexplored. This study explicates a newfound connection between neuroinflammation and brown- and bone marrow adipose tissue. Leveraging the use of [18F]F-AraG, a mitochondrial metabolic tracer capable of tracking activated lymphocytes and adipocytes simultaneously, we demonstrate, in models of glioblastoma and multiple sclerosis, the correlation between intracerebral immune infiltration and changes in brown- and bone marrow adipose tissue. Significantly, we show initial evidence that a neuroinflammation-adipose tissue link may also exist in humans. This study proposes the concept of an intricate immuno-neuro-adipose circuit, and highlights brown- and bone marrow adipose tissue as an intermediary in the communication between the immune and nervous systems. Understanding the interconnectedness within this circuitry may lead to advancements in the treatment and management of various conditions, including cancer, neurodegenerative diseases and metabolic disorders.


Assuntos
Tecido Adiposo Marrom , Doenças Neuroinflamatórias , Animais , Humanos , Tecido Adiposo Marrom/metabolismo , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Medula Óssea/metabolismo , Camundongos , Masculino , Glioblastoma/patologia , Glioblastoma/imunologia , Glioblastoma/metabolismo , Camundongos Endogâmicos C57BL , Feminino , Esclerose Múltipla/patologia , Esclerose Múltipla/imunologia , Esclerose Múltipla/metabolismo , Esclerose Múltipla/diagnóstico por imagem , Tomografia por Emissão de Pósitrons
2.
Sci Adv ; 10(28): eadn0881, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38996027

RESUMO

Epithelial ovarian cancer (EOC) remains one of the most lethal gynecological cancers. Cytokine-induced memory-like (CIML) natural killer (NK) cells have shown promising results in preclinical and early-phase clinical trials. In the current study, CIML NK cells demonstrated superior antitumor responses against a panel of EOC cell lines, increased expression of activation receptors, and up-regulation of genes involved in cell cycle/proliferation and down-regulation of inhibitory/suppressive genes. CIML NK cells transduced with a chimeric antigen receptor (CAR) targeting the membrane-proximal domain of mesothelin (MSLN) further improved the antitumor responses against MSLN-expressing EOC cells and patient-derived xenograft tumor cells. CAR arming of the CIML NK cells subtanstially reduced their dysfunction in patient-derived ascites fluid with transcriptomic changes related to altered metabolism and tonic signaling as potential mechanisms. Lastly, the adoptive transfer of MSLN-CAR CIML NK cells demonstrated remarkable inhibition of tumor growth and prevented metastatic spread in xenograft mice, supporting their potential as an effective therapeutic strategy in EOC.


Assuntos
Células Matadoras Naturais , Mesotelina , Neoplasias Ovarianas , Receptores de Antígenos Quiméricos , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Animais , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Feminino , Camundongos , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/terapia , Linhagem Celular Tumoral , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Proteínas Ligadas por GPI/metabolismo , Proteínas Ligadas por GPI/genética , Imunoterapia Adotiva/métodos , Carcinoma Epitelial do Ovário/metabolismo , Carcinoma Epitelial do Ovário/patologia , Carcinoma Epitelial do Ovário/imunologia , Carcinoma Epitelial do Ovário/terapia , Memória Imunológica , Domínios Proteicos
3.
NPJ Breast Cancer ; 10(1): 42, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851818

RESUMO

The ESR1 ligand binding domain activating mutations are the most prevalent genetic mechanism of acquired endocrine resistance in metastatic hormone receptor-positive breast cancer. These mutations confer endocrine resistance that remains estrogen receptor (ER) dependent. We hypothesized that in the presence of the ER mutations, continued ER blockade with endocrine therapies that target mutant ER is essential for tumor suppression even with chemotherapy treatment. Here, we conducted comprehensive pre-clinical in vitro and in vivo experiments testing the efficacy of adding fulvestrant to fluorouracil (5FU) and the 5FU pro-drug, capecitabine, in models of wild-type (WT) and mutant ER. Our findings revealed that while this combination had an additive effect in the presence of WT-ER, in the presence of the Y537S ER mutation there was synergy. Notably, these effects were not seen with the combination of 5FU and selective estrogen receptor modulators, such as tamoxifen, or in the absence of intact P53. Likewise, in a patient-derived xenograft (PDX) harboring a Y537S ER mutation the addition of fulvestrant to capecitabine potentiated tumor suppression. Moreover, multiplex immunofluorescence revealed that this effect was due to decreased cell proliferation in all cells expressing ER and was not dependent on the degree of ER expression. Taken together, these results support the clinical investigation of the combination of ER antagonists with capecitabine in patients with metastatic hormone receptor-positive breast cancer who have experienced progression on endocrine therapy and targeted therapies, particularly in the presence of an ESR1 activating mutation.

4.
Cancer Res ; 84(11): 1834-1855, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38831751

RESUMO

Cancer cells exhibit metabolic plasticity to meet oncogene-driven dependencies while coping with nutrient availability. A better understanding of how systemic metabolism impacts the accumulation of metabolites that reprogram the tumor microenvironment (TME) and drive cancer could facilitate development of precision nutrition approaches. Using the Hi-MYC prostate cancer mouse model, we demonstrated that an obesogenic high-fat diet (HFD) rich in saturated fats accelerates the development of c-MYC-driven invasive prostate cancer through metabolic rewiring. Although c-MYC modulated key metabolic pathways, interaction with an obesogenic HFD was necessary to induce glycolysis and lactate accumulation in tumors. These metabolic changes were associated with augmented infiltration of CD206+ and PD-L1+ tumor-associated macrophages (TAM) and FOXP3+ regulatory T cells, as well as with the activation of transcriptional programs linked to disease progression and therapy resistance. Lactate itself also stimulated neoangiogenesis and prostate cancer cell migration, which were significantly reduced following treatment with the lactate dehydrogenase inhibitor FX11. In patients with prostate cancer, high saturated fat intake and increased body mass index were associated with tumor glycolytic features that promote the infiltration of M2-like TAMs. Finally, upregulation of lactate dehydrogenase, indicative of a lactagenic phenotype, was associated with a shorter time to biochemical recurrence in independent clinical cohorts. This work identifies cooperation between genetic drivers and systemic metabolism to hijack the TME and promote prostate cancer progression through oncometabolite accumulation. This sets the stage for the assessment of lactate as a prognostic biomarker and supports strategies of dietary intervention and direct lactagenesis blockade in treating advanced prostate cancer. SIGNIFICANCE: Lactate accumulation driven by high-fat diet and MYC reprograms the tumor microenvironment and promotes prostate cancer progression, supporting the potential of lactate as a biomarker and therapeutic target in prostate cancer. See related commentary by Frigo, p. 1742.


Assuntos
Dieta Hiperlipídica , Ácido Láctico , Obesidade , Neoplasias da Próstata , Proteínas Proto-Oncogênicas c-myc , Microambiente Tumoral , Masculino , Animais , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Dieta Hiperlipídica/efeitos adversos , Camundongos , Humanos , Ácido Láctico/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Obesidade/metabolismo , Obesidade/patologia , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Macrófagos Associados a Tumor/metabolismo
5.
Mol Cancer ; 23(1): 56, 2024 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-38491381

RESUMO

One of the major hurdles that has hindered the success of chimeric antigen receptor (CAR) T cell therapies against solid tumors is on-target off-tumor (OTOT) toxicity due to sharing of the same epitopes on normal tissues. To elevate the safety profile of CAR-T cells, an affinity/avidity fine-tuned CAR was designed enabling CAR-T cell activation only in the presence of a highly expressed tumor associated antigen (TAA) but not when recognizing the same antigen at a physiological level on healthy cells. Using direct stochastic optical reconstruction microscopy (dSTORM) which provides single-molecule resolution, and flow cytometry, we identified high carbonic anhydrase IX (CAIX) density on clear cell renal cell carcinoma (ccRCC) patient samples and low-density expression on healthy bile duct tissues. A Tet-On doxycycline-inducible CAIX expressing cell line was established to mimic various CAIX densities, providing coverage from CAIX-high skrc-59 tumor cells to CAIX-low MMNK-1 cholangiocytes. Assessing the killing of CAR-T cells, we demonstrated that low-affinity/high-avidity fine-tuned G9 CAR-T has a wider therapeutic window compared to high-affinity/high-avidity G250 that was used in the first anti-CAIX CAR-T clinical trial but displayed serious OTOT effects. To assess the therapeutic effect of G9 on patient samples, we generated ccRCC patient derived organotypic tumor spheroid (PDOTS) ex vivo cultures and demonstrated that G9 CAR-T cells exhibited superior efficacy, migration and cytokine release in these miniature tumors. Moreover, in an RCC orthotopic mouse model, G9 CAR-T cells showed enhanced tumor control compared to G250. In summary, G9 has successfully mitigated OTOT side effects and in doing so has made CAIX a druggable immunotherapeutic target.


Assuntos
Anidrases Carbônicas , Carcinoma de Células Renais , Neoplasias Renais , Receptores de Antígenos Quiméricos , Animais , Camundongos , Humanos , Anidrase Carbônica IX/genética , Carcinoma de Células Renais/metabolismo , Neoplasias Renais/patologia , Receptores de Antígenos Quiméricos/genética , Anidrases Carbônicas/metabolismo , Anidrases Carbônicas/uso terapêutico , Antígenos de Neoplasias , Anticorpos , Linfócitos T/metabolismo
6.
Clin Cancer Res ; 30(9): 1889-1905, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38381406

RESUMO

PURPOSE: Resistance to endocrine therapy (ET) and CDK4/6 inhibitors (CDK4/6i) is a clinical challenge in estrogen receptor (ER)-positive (ER+) breast cancer. Cyclin-dependent kinase 7 (CDK7) is a candidate target in endocrine-resistant ER+ breast cancer models and selective CDK7 inhibitors (CDK7i) are in clinical development for the treatment of ER+ breast cancer. Nonetheless, the precise mechanisms responsible for the activity of CDK7i in ER+ breast cancer remain elusive. Herein, we sought to unravel these mechanisms. EXPERIMENTAL DESIGN: We conducted multi-omic analyses in ER+ breast cancer models in vitro and in vivo, including models with different genetic backgrounds. We also performed genome-wide CRISPR/Cas9 knockout screens to identify potential therapeutic vulnerabilities in CDK4/6i-resistant models. RESULTS: We found that the on-target antitumor effects of CDK7 inhibition in ER+ breast cancer are in part p53 dependent, and involve cell cycle inhibition and suppression of c-Myc. Moreover, CDK7 inhibition exhibited cytotoxic effects, distinctive from the cytostatic nature of ET and CDK4/6i. CDK7 inhibition resulted in suppression of ER phosphorylation at S118; however, long-term CDK7 inhibition resulted in increased ER signaling, supporting the combination of ET with a CDK7i. Finally, genome-wide CRISPR/Cas9 knockout screens identified CDK7 and MYC signaling as putative vulnerabilities in CDK4/6i resistance, and CDK7 inhibition effectively inhibited CDK4/6i-resistant models. CONCLUSIONS: Taken together, these findings support the clinical investigation of selective CDK7 inhibition combined with ET to overcome treatment resistance in ER+ breast cancer. In addition, our study highlights the potential of increased c-Myc activity and intact p53 as predictors of sensitivity to CDK7i-based treatments.


Assuntos
Apoptose , Neoplasias da Mama , Ciclo Celular , Quinase Ativadora de Quinase Dependente de Ciclina , Quinases Ciclina-Dependentes , Resistencia a Medicamentos Antineoplásicos , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas c-myc , Receptores de Estrogênio , Transdução de Sinais , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Feminino , Resistencia a Medicamentos Antineoplásicos/genética , Apoptose/efeitos dos fármacos , Animais , Camundongos , Receptores de Estrogênio/metabolismo , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/genética , Sistemas CRISPR-Cas
7.
iScience ; 27(2): 108879, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38327771

RESUMO

One of the major barriers that have restricted successful use of chimeric antigen receptor (CAR) T cells in the treatment of solid tumors is an unfavorable tumor microenvironment (TME). We engineered CAR-T cells targeting carbonic anhydrase IX (CAIX) to secrete anti-PD-L1 monoclonal antibody (mAb), termed immune-restoring (IR) CAR G36-PDL1. We tested CAR-T cells in a humanized clear cell renal cell carcinoma (ccRCC) orthotopic mouse model with reconstituted human leukocyte antigen (HLA) partially matched human leukocytes derived from fetal CD34+ hematopoietic stem cells (HSCs) and bearing human ccRCC skrc-59 cells under the kidney capsule. G36-PDL1 CAR-T cells, haploidentical to the tumor cells, had a potent antitumor effect compared to those without immune-restoring effect. Analysis of the TME revealed that G36-PDL1 CAR-T cells restored active antitumor immunity by promoting tumor-killing cytotoxicity, reducing immunosuppressive cell components such as M2 macrophages and exhausted CD8+ T cells, and enhancing T follicular helper (Tfh)-B cell crosstalk.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA