Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(46): 25120-25133, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37939223

RESUMO

The P450 enzyme CYP121 from Mycobacterium tuberculosis catalyzes a carbon-carbon (C-C) bond coupling cyclization of the dityrosine substrate containing a diketopiperazine ring, cyclo(l-tyrosine-l-tyrosine) (cYY). An unusual high-spin (S = 5/2) ferric intermediate maximizes its population in less than 5 ms in the rapid freeze-quenching study of CYP121 during the shunt reaction with peracetic acid or hydrogen peroxide in acetic acid solution. We show that this intermediate can also be observed in the crystalline state by EPR spectroscopy. By developing an on-demand-rapid-mixing method for time-resolved serial femtosecond crystallography with X-ray free-electron laser (tr-SFX-XFEL) technology covering the millisecond time domain and without freezing, we structurally monitored the reaction in situ at room temperature. After a 200 ms peracetic acid reaction with the cocrystallized enzyme-substrate microcrystal slurry, a ferric-hydroperoxo intermediate is observed, and its structure is determined at 1.85 Å resolution. The structure shows a hydroperoxyl ligand between the heme and the native substrate, cYY. The oxygen atoms of the hydroperoxo are 2.5 and 3.2 Å from the iron ion. The end-on binding ligand adopts a near-side-on geometry and is weakly associated with the iron ion, causing the unusual high-spin state. This compound 0 intermediate, spectroscopically and structurally observed during the catalytic shunt pathway, reveals a unique binding mode that deviates from the end-on compound 0 intermediates in other heme enzymes. The hydroperoxyl ligand is only 2.9 Å from the bound cYY, suggesting an active oxidant role of the intermediate for direct substrate oxidation in the nonhydroxylation C-C bond coupling chemistry.


Assuntos
Ácido Peracético , Peróxidos , Ligantes , Sistema Enzimático do Citocromo P-450/metabolismo , Ferro , Heme/química , Tirosina , Carbono
2.
Curr Opin Chem Biol ; 75: 102332, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37269676

RESUMO

Half-of-sites reactivity in many homodimeric and homotetrameric metalloenzymes has been known for half a century, yet its benefit remains poorly understood. A recently reported cryo-electron microscopy structure has given some clues on the less optimized reactivity of Escherichia coli ribonucleotide reductase with an asymmetric association of α2ß2 subunits during catalysis. Moreover, nonequivalence of enzyme active sites has been reported in many other enzymes, possibly as a means of regulation. They are often induced by substrate binding or caused by a critical component introduced from a neighboring subunit in response to substrate loadings, such as in prostaglandin endoperoxide H synthase, cytidine triphosphate synthase, glyoxalase, tryptophan dioxygenase, and several decarboxylases or dehydrogenases. Overall, half-of-sites reactivity is likely not an act of wasting resources but rather a method devised in nature to accommodate catalytic or regulatory needs.


Assuntos
Metaloproteínas , Microscopia Crioeletrônica , Metaloproteínas/química , Domínio Catalítico , Escherichia coli , Catálise , Sítios de Ligação
3.
ACS Catal ; 10(2): 1628-1639, 2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-32391185

RESUMO

CYP121 is a P450 enzyme from Mycobacterium tuberculosis that catalyzes a C-C coupling reaction between the two aromatic rings on its native substrate cyclo(l-Tyr-l-Tyr) (cYY) to form mycocyclosin, a necessary product for cell survival. Unlike the typical P450 enzymes for hydroxylation, CYP121 is believed to behave like a peroxidase and conduct radical-mediated C-C bond formation. Here, we probe whether the phenolic hydrogen of the substrate is the site of the postulated hydrogen atom abstraction for radical formation. We synthesized a singly O-methylated substrate analogue, cYF-4-OMe, and characterized its interaction with CYP121 by ultraviolet-visible and electron paramagnetic resonance spectroscopies and X-ray crystallography. We found that cYF-4-OMe can function as a substrate of CYP121 using the established assay via the peroxide shunt. Analysis of the enzymatic reaction revealed an O-demethylation of cYF-4-OMe instead of cyclization, yielding cYY and formaldehyde. A hydroxylated substrate, cYF-4-OMeOH, is expected to be the intermediate product, which was trapped and structurally characterized by X-ray crystallography. We further determined that the deformylation reaction of cYF-4-OMeOH proceeds via an alkyl-oxygen rather than aryl-oxygen bond cleavage by the 18O-labeling studies. Finally, the pH dependence catalytic study on the native substrate and the methoxy analogue further supports the mechanistic understanding that the hydrogen atom abstraction is the critical first oxidation step exerted by a heme-based oxidant during the cyclization reaction of cYY. The switch in catalytic activity reveals the power of CYP121 as a P450 enzyme and provides insight into the peroxidase-like catalytic mechanism.

4.
RSC Adv ; 7(76): 48068-48076, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-30701066

RESUMO

A hybrid material of gold nanodiscs on a calcinated titania nanofilm that allows for selective quantitative and qualitative characterization of surface-enriched phosphopeptides has been designed and reported. Fabrication was realized through a combination of layer-by-layer deposition and high temperature calcination for the titania, and hole-mask colloidal lithography for the plasmonic nanostructures. The morphology of the resulting titania material was rigorously characterized, exhibiting substantially decreased surface roughness, which allows for lithographic fabrication of plasmonic nanostructures. Moreover, high specificity in adsorption and enrichment of phosphopeptides was exhibited, which was verified by LSPR shifts and matching peaks under mass spectrometric analysis. The construction of these biochips should inform other combinatorial nanofabrication techniques, in addition to allowing future phosphoproteomic analyses to be performed in a time and resource-efficient manner.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...