Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 30(29): e202400504, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38499467

RESUMO

To fully harness the potential of molecular machines, it is crucial to develop methods by which to exert control over their speed of motion through the application of external stimuli. A conformationally strained macrocyclic fluorescent rotamer, CarROT, displays a reproducible and linear fluorescence decrease towards temperature over the physiological temperature range. Through the external addition of anions, cations or through deprotonation, the compound can access four discreet rotational speeds via supramolecular interactions (very slow, slow, fast and very fast) which in turn stop, reduce or enhance the thermoluminescent properties due to increasing or decreasing non-radiative decay processes, thereby providing a means to externally control the temperature sensitivity of the system. Through comparison with analogues with a higher degree of conformational freedom, the high thermosensitivity of CarROT over the physiological temperature range was determined to be due to conformational strain, which causes a high energy barrier to rotation over this range. Analogues with a higher degree of conformational freedom display lower sensitivities towards temperature over the same temperature range. This study provides an example of an information rich small molecule, in which programable rotational speed states can be observed with facile read-out.

2.
Nat Methods ; 19(12): 1572-1577, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36443486

RESUMO

Achieving state-of-the-art performance with deep neural population dynamics models requires extensive hyperparameter tuning for each dataset. AutoLFADS is a model-tuning framework that automatically produces high-performing autoencoding models on data from a variety of brain areas and tasks, without behavioral or task information. We demonstrate its broad applicability on several rhesus macaque datasets: from motor cortex during free-paced reaching, somatosensory cortex during reaching with perturbations, and dorsomedial frontal cortex during a cognitive timing task.


Assuntos
Córtex Motor , Redes Neurais de Computação , Animais , Macaca mulatta , Dinâmica Populacional , Córtex Somatossensorial
3.
Sci Rep ; 10(1): 14992, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32929133

RESUMO

Long-lasting confusion and memory difficulties during the postictal state remain a major unmet problem in epilepsy that lacks pathophysiological explanation and treatment. We previously identified that long-lasting periods of severe postictal hypoperfusion/hypoxia, not seizures per se, are associated with memory impairment after temporal lobe seizures. While this observation suggests a key pathophysiological role for insufficient energy delivery, it is unclear how the networks that underlie episodic memory respond to vascular constraints that ultimately give rise to amnesia. Here, we focused on cellular/network level analyses in the CA1 of hippocampus in vivo to determine if neural activity, network oscillations, synaptic transmission, and/or synaptic plasticity are impaired following kindled seizures. Importantly, the induction of severe postictal hypoperfusion/hypoxia was prevented in animals treated by a COX-2 inhibitor, which experimentally separated seizures from their vascular consequences. We observed complete activation of CA1 pyramidal neurons during brief seizures, followed by a short period of reduced activity and flattening of the local field potential that resolved within minutes. During the postictal state, constituting tens of minutes to hours, we observed no changes in neural activity, network oscillations, and synaptic transmission. However, long-term potentiation of the temporoammonic pathway to CA1 was impaired in the postictal period, but only when severe local hypoxia occurred. Lastly, we tested the ability of rats to perform object-context discrimination, which has been proposed to require temporoammonic input to differentiate between sensory experience and the stored representation of the expected object-context pairing. Deficits in this task following seizures were reversed by COX-2 inhibition, which prevented severe postictal hypoxia. These results support a key role for hypoperfusion/hypoxia in postictal memory impairments and identify that many aspects of hippocampal network function are resilient during severe hypoxia except for long-term synaptic plasticity.


Assuntos
Amnésia/fisiopatologia , Hipocampo/fisiopatologia , Convulsões/fisiopatologia , Acetaminofen/farmacologia , Animais , Região CA1 Hipocampal/fisiopatologia , Hipocampo/efeitos dos fármacos , Hipóxia/fisiopatologia , Potenciação de Longa Duração , Masculino , Camundongos Endogâmicos C57BL , Plasticidade Neuronal , Células Piramidais/fisiologia , Ratos Long-Evans , Convulsões/induzido quimicamente , Convulsões/complicações , Transmissão Sináptica , Vasoconstrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...