Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Adv Sci (Weinh) ; 11(4): e2306206, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38032140

RESUMO

The electronic device, with its biocompatibility, biodegradability, and ease of fabrication process, shows great potential to embed into health monitoring and hardware data security systems. Herein, polyvinylpyrrolidone (PVP) biopolymer is presented as an active layer, electrochemically active magnesium (Mg) as a metal electrode, and chitosan-based substrate (CHS) to fabricate biocompatible and biodegradable physically transient neuromorphic device (W/Mg/PVP/Mg/CHS). The I-V curve of device is non-volatile bipolar in nature and shows a unique compliance-induced multilevel RESET-dependent-SET behavior while sweeping the compliance current from a few microamperes to milliamperes. Non-volatile and stable switching properties are demonstrated with a long endurance test (100 sweeps) and retention time of over 104  s. The physically transient memristor (PTM) has remarkably high dynamic RON /ROFF (ON/OFF state resistance) ratio (106 Ω), and when placed in deionized (DI) water, the device is observed to completely dissolve within 10 min. The pulse transient measurements demonstrate the neuromorphic computation capabilities of the device in the form of excitatory post synaptic current (EPSC), potentiation, depression, and learning behavior, which resemble the biological function of neurons. The results demonstrate the potential of W/Mg/PVP/Mg/CHS device for use in future healthcare and physically transient electronics.

2.
bioRxiv ; 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37745400

RESUMO

Alcohol use disorder (AUD) is moderately heritable with significant social and economic impact. Genome-wide association studies (GWAS) have identified common variants associated with AUD, however, rare variant investigations have yet to achieve well-powered sample sizes. In this study, we conducted an interval-based exome-wide analysis of the Alcohol Use Disorder Identification Test Problems subscale (AUDIT-P) using both machine learning (ML) predicted risk and empirical functional weights. This research has been conducted using the UK Biobank Resource (application number 30782.) Filtering the 200k exome release to unrelated individuals of European ancestry resulted in a sample of 147,386 individuals with 51,357 observed and 96,029 unmeasured but predicted AUDIT-P for exome analysis. Sequence Kernel Association Test (SKAT/SKAT-O) was used for rare variant (Minor Allele Frequency (MAF) < 0.01) interval analyses using default and empirical weights. Empirical weights were constructed using annotations found significant by stratified LD Score Regression analysis of predicted AUDIT-P GWAS, providing prior functional weights specific to AUDIT-P. Using only samples with observed AUDIT-P yielded no significantly associated intervals. In contrast, ADH1C and THRA gene intervals were significant (False discovery rate (FDR) <0.05) using default and empirical weights in the predicted AUDIT-P sample, with the most significant association found using predicted AUDIT-P and empirical weights in the ADH1C gene (SKAT-O P Default = 1.06 x 10 -9 and P Empirical weight = 6.25 x 10 -11 ). These findings provide evidence for rare variant association of the ADH1C gene with the AUDIT-P and highlight the successful leveraging of ML to increase effective sample size and prior empirical functional weights based on common variant GWAS data to refine and increase the statistical significance in underpowered phenotypes.

3.
Front Genet ; 14: 1191264, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37415601

RESUMO

Neuropsychiatric and substance use disorders (NPSUDs) have a complex etiology that includes environmental and polygenic risk factors with significant cross-trait genetic correlations. Genome-wide association studies (GWAS) of NPSUDs yield numerous association signals. However, for most of these regions, we do not yet have a firm understanding of either the specific risk variants or the effects of these variants. Post-GWAS methods allow researchers to use GWAS summary statistics and molecular mediators (transcript, protein, and methylation abundances) infer the effect of these mediators on risk for disorders. One group of post-GWAS approaches is commonly referred to as transcriptome/proteome/methylome-wide association studies, which are abbreviated as T/P/MWAS (or collectively as XWAS). Since these approaches use biological mediators, the multiple testing burden is reduced to the number of genes (∼20,000) instead of millions of GWAS SNPs, which leads to increased signal detection. In this work, our aim is to uncover likely risk genes for NPSUDs by performing XWAS analyses in two tissues-blood and brain. First, to identify putative causal risk genes, we performed an XWAS using the Summary-data-based Mendelian randomization, which uses GWAS summary statistics, reference xQTL data, and a reference LD panel. Second, given the large comorbidities among NPSUDs and the shared cis-xQTLs between blood and the brain, we improved XWAS signal detection for underpowered analyses by performing joint concordance analyses between XWAS results i) across the two tissues and ii) across NPSUDs. All XWAS signals i) were adjusted for heterogeneity in dependent instruments (HEIDI) (non-causality) p-values and ii) used to test for pathway enrichment. The results suggest that there were widely shared gene/protein signals within the major histocompatibility complex region on chromosome 6 (BTN3A2 and C4A) and elsewhere in the genome (FURIN, NEK4, RERE, and ZDHHC5). The identification of putative molecular genes and pathways underlying risk may offer new targets for therapeutic development. Our study revealed an enrichment of XWAS signals in vitamin D and omega-3 gene sets. So, including vitamin D and omega-3 in treatment plans may have a modest but beneficial effect on patients with bipolar disorder.

4.
Nat Genet ; 55(3): 369-376, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36914870

RESUMO

Schizophrenia (SCZ) is a chronic mental illness and among the most debilitating conditions encountered in medical practice. A recent landmark SCZ study of the protein-coding regions of the genome identified a causal role for ten genes and a concentration of rare variant signals in evolutionarily constrained genes1. This recent study-and most other large-scale human genetics studies-was mainly composed of individuals of European (EUR) ancestry, and the generalizability of the findings in non-EUR populations remains unclear. To address this gap, we designed a custom sequencing panel of 161 genes selected based on the current knowledge of SCZ genetics and sequenced a new cohort of 11,580 SCZ cases and 10,555 controls of diverse ancestries. Replicating earlier work, we found that cases carried a significantly higher burden of rare protein-truncating variants (PTVs) among evolutionarily constrained genes (odds ratio = 1.48; P = 5.4 × 10-6). In meta-analyses with existing datasets totaling up to 35,828 cases and 107,877 controls, this excess burden was largely consistent across five ancestral populations. Two genes (SRRM2 and AKAP11) were newly implicated as SCZ risk genes, and one gene (PCLO) was identified as shared by individuals with SCZ and those with autism. Overall, our results lend robust support to the rare allelic spectrum of the genetic architecture of SCZ being conserved across diverse human populations.


Assuntos
Transtorno Autístico , Esquizofrenia , Humanos , Esquizofrenia/genética , Transtorno Autístico/genética , Alelos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos
5.
Br J Psychiatry ; 223(1): 301-308, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36503694

RESUMO

BACKGROUND: Psychotic disorders and schizotypal traits aggregate in the relatives of probands with schizophrenia. It is currently unclear how variability in symptom dimensions in schizophrenia probands and their relatives is associated with polygenic liability to psychiatric disorders. AIMS: To investigate whether polygenic risk scores (PRSs) can predict symptom dimensions in members of multiplex families with schizophrenia. METHOD: The largest genome-wide data-sets for schizophrenia, bipolar disorder and major depressive disorder were used to construct PRSs in 861 participants from the Irish Study of High-Density Multiplex Schizophrenia Families. Symptom dimensions were derived using the Operational Criteria Checklist for Psychotic Disorders in participants with a history of a psychotic episode, and the Structured Interview for Schizotypy in participants without a history of a psychotic episode. Mixed-effects linear regression models were used to assess the relationship between PRS and symptom dimensions across the psychosis spectrum. RESULTS: Schizophrenia PRS is significantly associated with the negative/disorganised symptom dimension in participants with a history of a psychotic episode (P = 2.31 × 10-4) and negative dimension in participants without a history of a psychotic episode (P = 1.42 × 10-3). Bipolar disorder PRS is significantly associated with the manic symptom dimension in participants with a history of a psychotic episode (P = 3.70 × 10-4). No association with major depressive disorder PRS was observed. CONCLUSIONS: Polygenic liability to schizophrenia is associated with higher negative/disorganised symptoms in participants with a history of a psychotic episode and negative symptoms in participants without a history of a psychotic episode in multiplex families with schizophrenia. These results provide genetic evidence in support of the spectrum model of schizophrenia, and support the view that negative and disorganised symptoms may have greater genetic basis than positive symptoms, making them better indices of familial liability to schizophrenia.


Assuntos
Transtorno Depressivo Maior , Transtornos Psicóticos , Esquizofrenia , Transtorno da Personalidade Esquizotípica , Humanos , Esquizofrenia/diagnóstico , Esquizofrenia/genética , Transtorno da Personalidade Esquizotípica/diagnóstico , Transtorno da Personalidade Esquizotípica/genética , Transtorno da Personalidade Esquizotípica/psicologia , Transtorno Depressivo Maior/diagnóstico , Transtorno Depressivo Maior/genética , Transtornos Psicóticos/genética , Transtornos Psicóticos/psicologia , Fatores de Risco
6.
Schizophrenia (Heidelb) ; 8(1): 106, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36434002

RESUMO

Psychotic and affective disorders often aggregate in the relatives of probands with schizophrenia, and genetic studies show substantial genetic correlation among schizophrenia, bipolar disorder, and major depressive disorder. In this study, we examined the polygenic risk burden of bipolar disorder and major depressive disorder in 257 multiplex schizophrenia families (N = 1005) from the Irish Study of High-Density Multiplex Schizophrenia Families versus 2205 ancestry-matched controls. Our results indicate that members of multiplex schizophrenia families have an increased polygenic risk for bipolar disorder and major depressive disorder compared to population controls. However, this observation is largely attributable to the part of the genetic risk that bipolar disorder or major depressive disorder share with schizophrenia due to genetic correlation, rather than the affective portion of the genetic risk unique to them. These findings suggest that a complete interpretation of cross-disorder polygenic risks in multiplex families requires an assessment of the relative contribution of shared versus unique genetic factors to account for genetic correlations across psychiatric disorders.

7.
Transl Psychiatry ; 12(1): 291, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35864105

RESUMO

Multiplex families have higher recurrence risk of schizophrenia compared to the families of sporadic cases, but the source of this increased recurrence risk is unknown. We used schizophrenia genome-wide association study data (N = 156,509) to construct polygenic risk scores (PRS) in 1005 individuals from 257 multiplex schizophrenia families, 2114 ancestry-matched sporadic cases, and 2205 population controls, to evaluate whether increased PRS can explain the higher recurrence risk of schizophrenia in multiplex families compared to ancestry-matched sporadic cases. Using mixed-effects logistic regression with family structure modeled as a random effect, we show that SCZ PRS in familial cases does not differ significantly from sporadic cases either with, or without family history (FH) of psychotic disorders (All sporadic cases p = 0.90, FH+ cases p = 0.88, FH- cases p = 0.82). These results indicate that increased burden of common schizophrenia risk variation as indexed by current SCZ PRS, is unlikely to account for the higher recurrence risk of schizophrenia in multiplex families. In the absence of elevated PRS, segregation of rare risk variation or environmental influences unique to the families may explain the increased familial recurrence risk. These findings also further validate a genetically influenced psychosis spectrum, as shown by a continuous increase of common SCZ risk variation burden from unaffected relatives to schizophrenia cases in multiplex families. Finally, these results suggest that common risk variation loading are unlikely to be predictive of schizophrenia recurrence risk in the families of index probands, and additional components of genetic risk must be identified and included in order to improve recurrence risk prediction.


Assuntos
Transtornos Psicóticos , Esquizofrenia , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Herança Multifatorial , Transtornos Psicóticos/genética , Fatores de Risco , Esquizofrenia/epidemiologia , Esquizofrenia/genética
8.
Brain Behav Immun ; 104: 183-190, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35714915

RESUMO

Common genetic variants identified in genome-wide association studies (GWAS) show varying degrees of genetic pleiotropy across complex human disorders. Clinical studies of schizophrenia (SCZ) suggest that in addition to neuropsychiatric symptoms, patients with SCZ also show variable immune dysregulation. Epidemiological studies of multiple sclerosis (MS), an autoimmune, neurodegenerative disorder of the central nervous system, suggest that in addition to the manifestation of neuroinflammatory complications, patients with MS may also show co-occurring neuropsychiatric symptoms with disease progression. In this study, we analyzed the largest available GWAS datasets for SCZ (N = 161,405) and MS (N = 41,505) using Gaussian causal mixture modeling (MiXeR) and conditional/conjunctional false discovery rate (condFDR) frameworks to explore and quantify the shared genetic architecture of these two complex disorders at common variant level. Despite detecting only a negligible genetic correlation (rG = 0.057), we observe polygenic overlap between SCZ and MS, and a substantial genetic enrichment in SCZ conditional on associations with MS, and vice versa. By leveraging this cross-disorder enrichment, we identified 36 loci jointly associated with SCZ and MS at conjunctional FDR < 0.05 with mixed direction of effects. Follow-up functional analysis of the shared loci implicates candidate genes and biological processes involved in immune response and B-cell receptor signaling pathways. In conclusion, this study demonstrates the presence of polygenic overlap between SCZ and MS in the absence of a genetic correlation and provides new insights into the shared genetic architecture of these two disorders at the common variant level.

9.
Brief Bioinform ; 22(5)2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-33791774

RESUMO

MOTIVATION: Rare variant-based analyses are beginning to identify risk genes for neuropsychiatric disorders and other diseases. However, the identified genes only account for a fraction of predicted causal genes. Recent studies have shown that rare damaging variants are significantly enriched in specific gene-sets. Methods which are able to jointly model rare variants and gene-sets to identify enriched gene-sets and use these enriched gene-sets to prioritize additional risk genes could improve understanding of the genetic architecture of diseases. RESULTS: We propose DECO (Integrated analysis of de novo mutations, rare case/control variants and omics information via gene-sets), an integrated method for rare-variant and gene-set analysis. The method can (i) test the enrichment of gene-sets directly within the statistical model, and (ii) use enriched gene-sets to rank existing genes and prioritize additional risk genes for tested disorders. In simulations, DECO performs better than a homologous method that uses only variant data. To demonstrate the application of the proposed protocol, we have applied this approach to rare-variant datasets of schizophrenia. Compared with a method which only uses variant information, DECO is able to prioritize additional risk genes. AVAILABILITY: DECO can be used to analyze rare-variants and biological pathways or cell types for any disease. The package is available on Github https://github.com/hoangtn/DECO.


Assuntos
Predisposição Genética para Doença/genética , Mutação , Transtornos do Neurodesenvolvimento/genética , Esquizofrenia/genética , Biologia de Sistemas/métodos , Estudos de Casos e Controles , Simulação por Computador , Análise Mutacional de DNA/métodos , Humanos , Modelos Estatísticos , Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas/genética
10.
Nat Commun ; 11(1): 2929, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32522981

RESUMO

Joint analysis of multiple traits can result in the identification of associations not found through the analysis of each trait in isolation. Studies of neuropsychiatric disorders and congenital heart disease (CHD) which use de novo mutations (DNMs) from parent-offspring trios have reported multiple putatively causal genes. However, a joint analysis method designed to integrate DNMs from multiple studies has yet to be implemented. We here introduce multiple-trait TADA (mTADA) which jointly analyzes two traits using DNMs from non-overlapping family samples. We first demonstrate that mTADA is able to leverage genetic overlaps to increase the statistical power of risk-gene identification. We then apply mTADA to large datasets of >13,000 trios for five neuropsychiatric disorders and CHD. We report additional risk genes for schizophrenia, epileptic encephalopathies and CHD. We outline some shared and specific biological information of intellectual disability and CHD by conducting systems biology analyses of genes prioritized by mTADA.


Assuntos
Deficiência Intelectual/genética , Mutação/genética , Predisposição Genética para Doença/genética , Humanos , Sequenciamento do Exoma/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...