Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Adv ; 6(16): 4047-4061, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39114141

RESUMO

Flowers are often discarded after cultural and religious events, making it worthwhile to explore the utilization of this floral waste for material production. Floral extracts contain a diverse array of phytochemicals such as polyphenols, flavonoids, and reducing sugars, which play a significant role in the formation and influencing the properties of zinc oxide (ZnO) nanoparticles. In this review, we delve into the importance of floral extract, methodology, mechanism, and influencing factors in the production of ZnO nanoparticles. Additionally, the role of green ZnO nanoparticles as an adsorbent and photocatalyst for water treatment is discussed. These floral extract-mediated ZnO nanoparticles exhibit advantages in agricultural and biomedical applications, including promoting seed germination and demonstrating antibacterial, anticancer, and antifungal properties. Cost analysis reveals that while various expenses are associated with ZnO production, scaling up processes can help reduce these costs. This review underscores the potential of floral waste extract for the synthesis of green ZnO nanoparticles, thereby contributing to waste-to-wealth strategies and adhering to green chemistry principles.

2.
Chemosphere ; 363: 142801, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38992446

RESUMO

Global water pollution by various pollutants is becoming an urgent problem. The conversion of durian fruit waste into adsorbents can help to mitigate this issue. Transforming durian waste into adsorbents can reduce pollution risk from waste discharged directly into the environment, while also effectively eliminating existing contaminants. Here, this work explores the potential of durian fruit waste and supplies insights into the synthesis and application of durian fruit waste-derived adsorbents such as biosorbents, modified-biosorbents, biochars, activated carbons, and composites. Several factors affecting the adsorption process of pollutants and the mechanism how pollutants can be adsorbed onto durian fruit waste-derived adsorbents are elucidated. This review also analyzes some aspects of limitations and prospects of biosorbents derived from durian fruit waste. It is anticipated that the promising properties and applications of durian fruit waste-derived adsorbents open up a new field for water waste treatment.


Assuntos
Frutas , Poluentes Químicos da Água , Purificação da Água , Frutas/química , Adsorção , Purificação da Água/métodos , Poluentes Químicos da Água/química , Bombacaceae/química , Carvão Vegetal/química , Eliminação de Resíduos Líquidos/métodos
3.
Chemosphere ; 362: 142654, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38901705

RESUMO

Clean water is an integral part of industries, agricultural activities and human life, but water contamination by toxic dyes, heavy metals, and oil spills is increasingly serious in the world. Aerogels with unique properties such as highly porous and extremely low density, tunable surface modification, excellent reusability, and thermal stability can contribute to addressing these issues. Thanks to high purity, biocompatibility and biodegradability, bacterial cellulose can be an ideal precursor source to produce aerogels. Here, we review the modification, regeneration, and applications of bacterial cellulose-based aerogels for water treatment. The modification of bacterial cellulose-based aerogels undergoes coating of hydrophobic agents, carbonization, and incorporation with other materials, e.g., ZIF-67, graphene oxide, nanoparticles, polyaniline. We emphasized features of modified aerogels on porosity, hydrophobicity, density, surface chemistry, and regeneration. Although major limits are relevant to the use of toxic coating agents, difficulty in bacterial culture, and production cost, the bacterial cellulose aerogels can obtain high performance for water treatment, particularly, catastrophic oil spills.


Assuntos
Bactérias , Celulose , Géis , Purificação da Água , Celulose/química , Purificação da Água/métodos , Géis/química , Custos e Análise de Custo , Poluentes Químicos da Água/química , Porosidade , Biodegradação Ambiental , Interações Hidrofóbicas e Hidrofílicas
4.
Environ Res ; 255: 119144, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38751006

RESUMO

Currently, plastic waste and antibiotic wastewater are two of the most critical environmental problems, calling for urgent measures to take. A waste-to-wealth strategy for the conversion of polyethylene terephthalate (PET) plastic bottles into value-added materials such as carbon composite is highly recommended to clean wastewater contaminated by antibiotics. Inspired by this idea, we develop a novel PET-AC-ZFO composite by incorporating PET plastic-derived KOH-activated carbon (AC) with ZnFe2O4 (ZFO) particles for adsorptive removal of tetracycline (TTC). PET-derived carbon (PET-C), KOH-activated PET-derived carbon (PET-AC), and PET-AC-ZFO were characterized using physicochemical analyses. Central composite design (CCD) was used to obtain a quadratic model by TTC concentration (K), adsorbent dosage (L), and pH (M). PET-AC-ZFO possessed micropores (d ≈ 2 nm) and exceptionally high surface area of 1110 m2 g-1. Nearly 90% TTC could be removed by PET-AC-ZFO composite. Bangham kinetic and Langmuir isotherm were two most fitted models. Theoretical maximum TTC adsorption capacity was 45.1 mg g-1. This study suggested the role of hydrogen bonds, pore-filling interactions, and π-π interactions as the main interactions of the adsorption process. Thus, a strategy for conversion of PET bottles into PET-AC-ZFO can contribute to both plastic recycling and antibiotic wastewater mitigation.


Assuntos
Antibacterianos , Carbono , Tetraciclina , Poluentes Químicos da Água , Adsorção , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Tetraciclina/química , Antibacterianos/química , Carbono/química , Plásticos/química , Purificação da Água/métodos , Águas Residuárias/química , Polietilenotereftalatos/química
5.
Artigo em Inglês | MEDLINE | ID: mdl-38809407

RESUMO

Recently, there has been a notable rise in the prevalence of persistent pollutants in the environment, posing a significant hazard due to their toxicity and enduring nature. Conventional wastewater treatment methods employed in treatment plants rarely address these persistent pollutants adequately. Meanwhile, the concept of green synthesis has garnered considerable attention, owing to its environmentally friendly approach that utilizes fewer toxic chemicals and solvents. The utilization of materials derived from sustainable sources presents a promising avenue for solving pressing environmental concerns. Among the various sources of biological agents, plants stand out for their accessibility, eco-friendliness, and rich reserves of phytochemicals suitable for material synthesis. The plant extract-mediated synthesis of zinc oxide nanoparticles (ZnONPs) has emerged as a promising solution for applications in wastewater treatment. Thorough investigations into the factors influencing the properties of these green ZnONPs are essential to establish a detailed and reliable synthesis process. Major weaknesses inherent in ZnONPs can be addressed by changing the optical, magnetic, and interface properties through doping with various semiconductor materials. Consequently, research efforts to mitigate water pollution are being driven by both the future prospects and limitations of ZnO-based composites. This review underscores the recent advancements of plant extract-mediated ZnONP composites for water treatment.

6.
Disabil Rehabil ; : 1-16, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38682811

RESUMO

PURPOSE: To investigate perspectives of multiple stakeholders involved in development and delivery of Vietnam's first speech-language pathology degrees and derive recommendations for future degrees in Vietnam and other Majority World countries. METHODS: An exploratory-descriptive qualitative research design using focus groups and individual semi-structured interviews in the preferred language (English or Vietnamese) was used, with 70 participants from five stakeholder groups: project managers, students, academic educators, placement supervisors and interpreters. Transcriptions were analysed using thematic network analysis. RESULTS: Analysis identified five organising themes: (1) People enjoyed working with/learning from others; (2) Benefits from/to stakeholders; (3) The pandemic impacted program delivery and learning; (4) Practical challenges; (5) Preparation with flexibility required for success and sustainability. From the five organising themes, one synthesising global theme was developed, conveying that satisfying international collaborations require preparation, support, high quality interpreting, and management of challenges. CONCLUSIONS: Recommendations highlight the need for preparation, collaboration, support to manage challenges, flexibility, recognition for placement supervisors and high-quality interpreting. The recommendations are of relevance to other organisations engaged in development of professional degrees in Majority World countries. Future research would benefit from a critical investigation of the diverse perspectives of stakeholders involved in the development and implementation of international curricula.


Many Majority World countries are seeking to develop university degrees to build a workforce of speech-language pathologists to provide services to people with communication and swallowing disabilitiesCollaborative relationships, flexibility, and delineation of roles and commitments are vital to partnership successConceptualisation of rehabilitation services in cross-cultural contexts must privilege the knowledge, experiences and preferences of local partnersLocal capacity building will support training programs and rehabilitation services that are sustainable and culturally relevant.

7.
Environ Res ; 254: 118883, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38583658

RESUMO

While durian shell is often discharged into landfills, this waste can be a potential and zero-cost raw material to synthesize carbon-based adsorbents with purposes of saving costs and minimizing environmental contamination. Indole (IDO) is one of serious organic pollutants that influence aquatic species and human health; hence, the necessity for IDO removal is worth considering. Here, we synthesized a magnetic composite, denoted as MFOAC, based on activated carbon (AC) derived from durian shell waste incorporated with MnFe2O4 (MFO) to adsorb IDO in water. MFOAC showed a microporous structure, along with a high surface area and pore volume, at 518.9 m2/g, and 0.106 cm3/g, respectively. Optimization of factors affecting the IDO removal of MFOAC were implemented by Box-Behnken design and response surface methodology. Adsorption kinetics and isotherms suggested a suitable model for MFOAC to remove IDO. MFOAC was recyclable with 3 cycles. Main interactions involving in the IDO adsorption mechanism onto MFOAC were clarified, including pore filling, n-π interaction, π-π interaction, Yoshida H-bonding, H-bonding.


Assuntos
Carvão Vegetal , Compostos Férricos , Indóis , Compostos de Manganês , Poluentes Químicos da Água , Indóis/química , Poluentes Químicos da Água/química , Adsorção , Compostos de Manganês/química , Compostos Férricos/química , Carvão Vegetal/química , Animais , Purificação da Água/métodos
8.
Nanoscale Adv ; 6(7): 1800-1821, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38545292

RESUMO

Metal-organic frameworks (MOFs), a burgeoning class of coordination polymers, have garnered significant attention due to their outstanding structure, porosity, and stability. They have been extensively studied in catalysis, energy storage, water harvesting, selective gas separation, and electrochemical applications. Recent advancements in post-synthetic strategies, surface functionality, and biocompatibility have expanded the application scope of MOFs, particularly in various biomedical fields. Herein, we review MOF-based nanomaterials bioimaging nanoplatforms in magnetic resonance imaging, computed tomography, and fluorescence imaging. MOFs serve as the foundation for biosensors, demonstrating efficiency in sensing H2O2, tumor biomarkers, microRNA, and living cancer cells. MOF-based carriers are well designed in drug delivery systems and anticancer treatment therapies. Additionally, we examine the challenges and prospects of MOFs in surface modification, release of metal ions, and interaction with intracellular components, as well as their toxicity and long-term effects.

9.
Chemosphere ; 355: 141599, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38548079

RESUMO

Several activities such as aquaculture, human and feedstock therapies can directly release antibiotics into water. Due to high stability, low hydrolysis and non-biodegradation, they can accumulate in the aqueous environment and transport to aquatic species. Here, we synthesized amine-functionalized porous carbons (ANC) by a direct-pyrolysis process of NH2-MIL-53(Al) as a sacrificial template at between 600 and 900 °C and utilized them to eliminate chloramphenicol antibiotic from water. The NH2-MIL-53(Al)-derived porous carbons obtained high surface areas (304.7-1600 m2 g-1) and chloramphenicol adsorption capacities (148.3-261.5 mg g-1). Several factors such as hydrogen bonding, Yoshida hydrogen bonding, and π-π interaction, hydrophobic interaction possibly controlled adsorption mechanisms. The ANC800 could be reused four cycles along with high stability in structure. As a result, NH2-MIL-53(Al)-derived porous carbons are recommended as recyclable and efficient adsorbents to the treatment of antibiotics in water.


Assuntos
Cloranfenicol , Pirólise , Humanos , Temperatura , Adsorção , Porosidade , Antibacterianos/química , Carbono/química , Água/química
10.
Carbohydr Polym ; 334: 122043, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38553239

RESUMO

Here, we prepared ionically crosslinked films using pectin extracted from agro-wastes, specifically ambarella peels (AFP) and jackfruit seed slimy sheath (JFS). Physiochemical properties of pectins, including moisture content, molecular weight (Mw), degree of esterification (DE), and galacturonic acid (GA), were analyzed. Optimal extraction was determined, i.e., citric acid concentration 0.3 M, time 60 min, solid/liquid ratio 1:25, and temperature 90 °C for AFP or 85 °C for JFS. Pectin yields under these conditions were 29.67 % ± 0.35 % and 29.93 ± 0.49 %, respectively. AFP pectin revealed Mw, DE, and GA values of 533.20 kDa, 67.08 % ± 0.68 %, and 75.39 ± 0.82 %, while JFS pectin exhibited values of 859.94 kDa, 63.04 % ± 0.47 %, and 78.63 % ± 0.71 %, respectively. The pectin films crosslinked with Ca2+, Cu2+, Fe3+, or Zn2+ exhibited enhanced tensile strength and Young's modulus, along with reduced elongation at break, moisture content, water solubility, water vapor permeability, and oxygen permeability. Structural analyses indicated metal ions were effectively crosslinked with carboxyl groups of pectin. Notably, the Cu2+-crosslinked film demonstrated superior water resistance, mechanical properties, and exhibited the highest antioxidant and antibacterial activities among all tested films. Therefore, the pectin films represent a promising avenue to produce eco-friendly food packaging materials with excellent properties.


Assuntos
Artocarpus , Pectinas , Artocarpus/química , Embalagem de Alimentos , Frutas/química , Íons/análise , Pectinas/química , Sementes
11.
Environ Sci Pollut Res Int ; 31(18): 26806-26823, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38453761

RESUMO

Toxic organic dyes-containing wastewater treatment by adsorption and photocatalytic techniques is widely applied, but adsorbents and photocatalysts are often synthesized through chemical methods, leading to secondary pollution by released chemicals. Here, we report a benign method using Tecoma stans floral extract to produce MgFe2O4/ZnO (MGFOZ) nanoparticles for adsorption and photocatalytic degradation of coomassie brilliant blue (CBB) dye. Green MGFOZ owned a surface area of 9.65 m2/g and an average grain size of 54 nm. This bio-based nanomaterial showed higher removal percentage and better recyclability (up to five cycles) than green MgFe2O4 and ZnO nanoparticles. CBB adsorption by MGFOZ was examined by kinetic and isotherm models with better fittings of Bangham and Langmuir or Temkin. RSM-based optimization was conducted to reach an actual adsorption capacity of 147.68 mg/g. Moreover, MGFOZ/visible light system showed a degradation efficiency of 89% CBB dye after 120 min. CBB adsorption can be controlled by both physisorption and chemisorption while •O2- and •OH radicals are responsible for photo-degradation of CBB dye. This study suggested that MGFOZ can be a promising adsorbent and catalyst for removal of organic dyes in water.


Assuntos
Corantes de Rosanilina , Poluentes Químicos da Água , Óxido de Zinco , Adsorção , Corantes de Rosanilina/química , Óxido de Zinco/química , Poluentes Químicos da Água/química , Catálise , Nanopartículas/química , Extratos Vegetais/química , Corantes/química , Flores/química , Compostos Férricos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA