Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
J Neurosci ; 44(5)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-37989593

RESUMO

Scientists have long conjectured that the neocortex learns patterns in sensory data to generate top-down predictions of upcoming stimuli. In line with this conjecture, different responses to pattern-matching vs pattern-violating visual stimuli have been observed in both spiking and somatic calcium imaging data. However, it remains unknown whether these pattern-violation signals are different between the distal apical dendrites, which are heavily targeted by top-down signals, and the somata, where bottom-up information is primarily integrated. Furthermore, it is unknown how responses to pattern-violating stimuli evolve over time as an animal gains more experience with them. Here, we address these unanswered questions by analyzing responses of individual somata and dendritic branches of layer 2/3 and layer 5 pyramidal neurons tracked over multiple days in primary visual cortex of awake, behaving female and male mice. We use sequences of Gabor patches with patterns in their orientations to create pattern-matching and pattern-violating stimuli, and two-photon calcium imaging to record neuronal responses. Many neurons in both layers show large differences between their responses to pattern-matching and pattern-violating stimuli. Interestingly, these responses evolve in opposite directions in the somata and distal apical dendrites, with somata becoming less sensitive to pattern-violating stimuli and distal apical dendrites more sensitive. These differences between the somata and distal apical dendrites may be important for hierarchical computation of sensory predictions and learning, since these two compartments tend to receive bottom-up and top-down information, respectively.


Assuntos
Cálcio , Neocórtex , Masculino , Feminino , Camundongos , Animais , Cálcio/fisiologia , Neurônios/fisiologia , Dendritos/fisiologia , Células Piramidais/fisiologia , Neocórtex/fisiologia
2.
Sci Data ; 10(1): 287, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37198203

RESUMO

The apical dendrites of pyramidal neurons in sensory cortex receive primarily top-down signals from associative and motor regions, while cell bodies and nearby dendrites are heavily targeted by locally recurrent or bottom-up inputs from the sensory periphery. Based on these differences, a number of theories in computational neuroscience postulate a unique role for apical dendrites in learning. However, due to technical challenges in data collection, little data is available for comparing the responses of apical dendrites to cell bodies over multiple days. Here we present a dataset collected through the Allen Institute Mindscope's OpenScope program that addresses this need. This dataset comprises high-quality two-photon calcium imaging from the apical dendrites and the cell bodies of visual cortical pyramidal neurons, acquired over multiple days in awake, behaving mice that were presented with visual stimuli. Many of the cell bodies and dendrite segments were tracked over days, enabling analyses of how their responses change over time. This dataset allows neuroscientists to explore the differences between apical and somatic processing and plasticity.


Assuntos
Células Piramidais , Córtex Visual , Animais , Camundongos , Corpo Celular , Dendritos/fisiologia , Neurônios , Células Piramidais/fisiologia , Córtex Visual/fisiologia
3.
Mov Disord ; 38(5): 818-830, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36987385

RESUMO

BACKGROUND: The landscape of neurophysiological symptoms and behavioral biomarkers in basal ganglia signals for movement disorders is expanding. The clinical translation of sensing-based deep brain stimulation (DBS) also requires a thorough understanding of the anatomical organization of spectral biomarkers within the subthalamic nucleus (STN). OBJECTIVES: The aims were to systematically investigate the spectral topography, including a wide range of sub-bands in STN local field potentials (LFP) of Parkinson's disease (PD) patients, and to evaluate its predictive performance for clinical response to DBS. METHODS: STN-LFPs were recorded from 70 PD patients (130 hemispheres) awake and at rest using multicontact DBS electrodes. A comprehensive spatial characterization, including hot spot localization and focality estimation, was performed for multiple sub-bands (delta, theta, alpha, low-beta, high-beta, low-gamma, high-gamma, and fast-gamma (FG) as well as low- and fast high-frequency oscillations [HFO]) and compared to the clinical hot spot for rigidity response to DBS. A spectral biomarker map was established and used to predict the clinical response to DBS. RESULTS: The STN shows a heterogeneous topographic distribution of different spectral biomarkers, with the strongest segregation in the inferior-superior axis. Relative to the superiorly localized beta hot spot, HFOs (FG, slow HFO) were localized up to 2 mm more inferiorly. Beta oscillations are spatially more spread compared to other sub-bands. Both the spatial proximity of contacts to the beta hot spot and the distance to higher-frequency hot spots were predictive for the best rigidity response to DBS. CONCLUSIONS: The spatial segregation and properties of spectral biomarkers within the DBS target structure can additionally be informative for the implementation of next-generation sensing-based DBS. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Gânglios da Base , Doença de Parkinson/terapia , Eletrodos
4.
Mov Disord Clin Pract ; 10(3): 434-439, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36949800

RESUMO

Background: Directional deep brain stimulation (DBS) allows for steering of the stimulation field, but extensive and time-consuming testing of all segmented contacts is necessary to identify the possible benefit of steering. It is therefore important to determine under which circumstances directional current steering is advantageous. Methods: Fifty two Parkinson's disease patients implanted in the STN with a directional DBS system underwent a standardized monopolar programming session 5 to 9 months after implantation. Individual contacts were tested for a potential advantage of directional stimulation. Results were used to build a prediction model for the selection of ring levels that would benefit from directional stimulation. Results: On average, there was no significant difference in therapeutic window between ring-level contact and best directional contact. However, according to our standardized protocol, 35% of the contacts and 66% of patients had a larger therapeutic window under directional stimulation compared to ring-mode. The segmented contacts warranting directional current steering could be predicted with a sensitivity of 79% and a specificity of 57%. Conclusion: To reduce time required for DBS programming, we recommend additional directional contact testing initially only on ring-level contacts with a therapeutic window of less than 2.0 mA.

5.
Neuromodulation ; 26(2): 320-332, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35219571

RESUMO

BACKGROUND: Deep brain stimulation (DBS) programming of multicontact DBS leads relies on a very time-consuming manual screening procedure, and strategies to speed up this process are needed. Beta activity in subthalamic nucleus (STN) local field potentials (LFP) has been suggested as a promising marker to index optimal stimulation contacts in patients with Parkinson disease. OBJECTIVE: In this study, we investigate the advantage of algorithmic selection and combination of multiple resting and movement state features from STN LFPs and imaging markers to predict three relevant clinical DBS parameters (clinical efficacy, therapeutic window, side-effect threshold). MATERIALS AND METHODS: STN LFPs were recorded at rest and during voluntary movements from multicontact DBS leads in 27 hemispheres. Resting- and movement-state features from multiple frequency bands (alpha, low beta, high beta, gamma, fast gamma, high frequency oscillations [HFO]) were used to predict the clinical outcome parameters. Subanalyses included an anatomical stimulation sweet spot as an additional feature. RESULTS: Both resting- and movement-state features contributed to the prediction, with resting (fast) gamma activity, resting/movement-modulated beta activity, and movement-modulated HFO being most predictive. With the proposed algorithm, the best stimulation contact for the three clinical outcome parameters can be identified with a probability of almost 90% after considering half of the DBS lead contacts, and it outperforms the use of beta activity as single marker. The combination of electrophysiological and imaging markers can further improve the prediction. CONCLUSION: LFP-guided DBS programming based on algorithmic selection and combination of multiple electrophysiological and imaging markers can be an efficient approach to improve the clinical routine and outcome of DBS patients.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Estimulação Encefálica Profunda/métodos , Movimento/fisiologia , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/terapia , Núcleo Subtalâmico/diagnóstico por imagem , Núcleo Subtalâmico/fisiologia , Resultado do Tratamento , Biomarcadores
6.
Neuromodulation ; 26(2): 348-355, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35088739

RESUMO

OBJECTIVES: Subthalamic nucleus (STN) deep brain stimulation (DBS) programming in patients with Parkinson disease (PD) may be challenging, especially when using segmented leads. In this study, we integrated a previously validated probabilistic STN sweet spot into a commercially available software to evaluate its predictive value for clinically effective DBS programming. MATERIALS AND METHODS: A total of 14 patients with PD undergoing bilateral STN DBS with segmented leads were included. A nonlinear co-registration of a previously defined probabilistic sweet spot onto the manually segmented STN was performed together with lead reconstruction and tractography of the corticospinal tract (CST) in each patient. Contacts were ranked (level and direction), and corresponding effect and side-effect thresholds were predicted based on the overlap of the volume of activated tissue (VTA) with the sweet spot and CST. Image-based findings were correlated with postoperative clinical testing results during monopolar contact review and chronic stimulation parameter settings used after 12 months. RESULTS: Image-based contact prediction showed high interrater reliability (Cohen kappa 0.851-0.91). Image-based and clinical ranking of the most efficient ring level and direction of stimulation were matched in 72% (95% CI 57.0-83.3) and 65% (95% CI 44.9-81.2), respectively, across the whole cohort. The mean difference between the predicted and clinically observed effect thresholds was 0.79 ± 0.69 mA (p = 0.72). The median difference between the predicted and clinically observed side-effect thresholds was -0.5 mA (p < 0.001, Wilcoxon paired signed rank test). CONCLUSIONS: Integration of a probabilistic STN functional sweet spot into a surgical programming software shows a promising capability to predict the best level and directional contact(s) as well as stimulation settings in DBS for PD and could be used to optimize programming with segmented lead technology. This integrated image-based programming approach still needs to be evaluated on a bigger data set and in a future prospective multicenter cohort.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Núcleo Subtalâmico/fisiologia , Estimulação Encefálica Profunda/métodos , Reprodutibilidade dos Testes , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/terapia , Software
7.
Nat Neurosci ; 26(2): 350-364, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36550293

RESUMO

Identification of structural connections between neurons is a prerequisite to understanding brain function. Here we developed a pipeline to systematically map brain-wide monosynaptic input connections to genetically defined neuronal populations using an optimized rabies tracing system. We used mouse visual cortex as the exemplar system and revealed quantitative target-specific, layer-specific and cell-class-specific differences in its presynaptic connectomes. The retrograde connectivity indicates the presence of ventral and dorsal visual streams and further reveals topographically organized and continuously varying subnetworks mediated by different higher visual areas. The visual cortex hierarchy can be derived from intracortical feedforward and feedback pathways mediated by upper-layer and lower-layer input neurons. We also identify a new role for layer 6 neurons in mediating reciprocal interhemispheric connections. This study expands our knowledge of the visual system connectomes and demonstrates that the pipeline can be scaled up to dissect connectivity of different cell populations across the mouse brain.


Assuntos
Conectoma , Córtex Visual , Camundongos , Animais , Neurônios/fisiologia , Encéfalo/fisiologia , Córtex Visual/fisiologia , Vias Visuais
8.
eNeuro ; 9(1)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35022186

RESUMO

Despite significant progress in understanding neural coding, it remains unclear how the coordinated activity of large populations of neurons relates to what an observer actually perceives. Since neurophysiological differences must underlie differences among percepts, differentiation analysis-quantifying distinct patterns of neurophysiological activity-has been proposed as an "inside-out" approach that addresses this question. This methodology contrasts with "outside-in" approaches such as feature tuning and decoding analyses, which are defined in terms of extrinsic experimental variables. Here, we used two-photon calcium imaging in mice of both sexes to systematically survey stimulus-evoked neurophysiological differentiation (ND) in excitatory neuronal populations in layers (L)2/3, L4, and L5 across five visual cortical areas (primary, lateromedial, anterolateral, posteromedial, and anteromedial) in response to naturalistic and phase-scrambled movie stimuli. We find that unscrambled stimuli evoke greater ND than scrambled stimuli specifically in L2/3 of the anterolateral and anteromedial areas, and that this effect is modulated by arousal state and locomotion. By contrast, decoding performance was far above chance and did not vary substantially across areas and layers. Differentiation also differed within the unscrambled stimulus set, suggesting that differentiation analysis may be used to probe the ethological relevance of individual stimuli.


Assuntos
Córtex Visual , Animais , Feminino , Locomoção/fisiologia , Masculino , Camundongos , Neurônios/fisiologia , Neurofisiologia , Estimulação Luminosa , Córtex Visual/fisiologia
9.
PLoS One ; 17(1): e0262930, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35085343

RESUMO

This study aims to investigate the influence of all the mixture components of high-performance concrete (HPC) on its early compressive strength, ranging from 1 to 14 days. To this purpose, a Gaussian Process Regression (GPR) algorithm was first constructed using a database gathered from the available literature. The database included the contents of cement, blast furnace slag (BFS), fly ash (FA), water, superplasticizer, coarse, fine aggregates, and testing age as input variables to predict the output of the problem, which was the early compressive strength. Several standard statistical criteria, such as the Pearson correlation coefficient, root mean square error and mean absolute error, were used to quantify the performance of the GPR model. To analyze the sensitivity and influence of the HPC mixture components, partial dependence plots analysis was conducted with both one-dimensional and two-dimensional. Firstly, the results showed that the GPR performed well in predicting the early strength of HPC. Second, it was determined that the cement content and testing age of HPC were the most sensitive and significant elements affecting the early strength of HPC, followed by the BFS, water, superplasticizer, FA, fine aggregate, and coarse aggregate contents. To put it simply, this research might assist engineers select the appropriate amount of mixture components in the HPC production process to obtain the necessary early compressive strength.


Assuntos
Algoritmos , Força Compressiva , Materiais de Construção , Modelos Teóricos
10.
eNeuro ; 9(5)2022.
Artigo em Inglês | MEDLINE | ID: mdl-36635937

RESUMO

Multiple recent studies have shown that motor activity greatly impacts the activity of primary sensory areas like V1. Yet, the role of this motor related activity in sensory processing is still unclear. Here, we dissect how these behavior signals are broadcast to different layers and areas of the visual cortex. To do so, we leveraged a standardized and spontaneous behavioral fidget event in passively viewing mice. Importantly, this behavior event had no relevance to any ongoing task allowing us to compare its neuronal correlates with visually relevant behaviors (e.g., running). A large two-photon Ca2+ imaging database of neuronal responses uncovered four neural response types during fidgets that were consistent in their proportion and response patterns across all visual areas and layers of the visual cortex. Indeed, the layer and area identity could not be decoded above chance level based only on neuronal recordings. In contrast to running behavior, fidget evoked neural responses that were independent to visual processing. The broad availability of visually orthogonal standardized behavior signals could be a key component in how the cortex selects, learns and binds local sensory information with motor outputs. Contrary to behaviorally relevant motor outputs, irrelevant motor signals could project to separate local neural subspaces.


Assuntos
Córtex Visual , Percepção Visual , Animais , Camundongos , Percepção Visual/fisiologia , Neurônios/fisiologia , Córtex Visual/fisiologia , Estimulação Luminosa/métodos
11.
PLoS One ; 16(12): e0260847, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34860842

RESUMO

An extensive simulation program is used in this study to discover the best ANN model for predicting the compressive strength of concrete containing Ground Granulated Blast Furnace Slag (GGBFS). To accomplish this purpose, an experimental database of 595 samples is compiled from the literature and utilized to find the best ANN architecture. The cement content, water content, coarse aggregate content, fine aggregate content, GGBFS content, carboxylic type hyper plasticizing content, superplasticizer content, and testing age are the eight inputs in this database. As a result, the optimal selection of the ANN design is carried out and evaluated using conventional statistical metrics. The results demonstrate that utilizing the best architecture [8-14-4-1] among the 240 investigated architectures, and the best ANN model, is a very efficient predictor of the compressive strength of concrete using GGBFS, with a maximum R2 value of 0.968 on the training part and 0.965 on the testing part. Furthermore, a sensitivity analysis is performed over 500 Monte Carlo simulations using the best ANN model to determine the reliability of ANN model in predicting the compressive strength of concrete. The findings of this research may make it easier and more efficient to apply the ANN model to many civil engineering challenges.


Assuntos
Força Compressiva , Materiais de Construção/análise , Resíduos Industriais/análise , Teste de Materiais/métodos , Método de Monte Carlo , Redes Neurais de Computação , Humanos , Reprodutibilidade dos Testes
12.
PLoS One ; 16(4): e0247391, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33798200

RESUMO

In this paper, an extensive simulation program is conducted to find out the optimal ANN model to predict the shear strength of fiber-reinforced polymer (FRP) concrete beams containing both flexural and shear reinforcements. For acquiring this purpose, an experimental database containing 125 samples is collected from the literature and used to find the best architecture of ANN. In this database, the input variables consist of 9 inputs, such as the ratio of the beam width, the effective depth, the shear span to the effective depth, the compressive strength of concrete, the longitudinal FRP reinforcement ratio, the modulus of elasticity of longitudinal FRP reinforcement, the FRP shear reinforcement ratio, the tensile strength of FRP shear reinforcement, the modulus of elasticity of FRP shear reinforcement. Thereafter, the selection of the appropriate architecture of ANN model is performed and evaluated by common statistical measurements. The results show that the optimal ANN model is a highly efficient predictor of the shear strength of FRP concrete beams with a maximum R2 value of 0.9634 on the training part and an R2 of 0.9577 on the testing part, using the best architecture. In addition, a sensitivity analysis using the optimal ANN model over 500 Monte Carlo simulations is performed to interpret the influence of reinforcement type on the stability and accuracy of ANN model in predicting shear strength. The results of this investigation could facilitate and enhance the use of ANN model in different real-world problems in the field of civil engineering.


Assuntos
Polímeros/química , Resistência ao Cisalhamento , Aço/química , Corrosão , Elasticidade , Modelos Químicos , Método de Monte Carlo , Redes Neurais de Computação
13.
Elife ; 92020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33108272

RESUMO

Vasoactive intestinal peptide-expressing (VIP) interneurons in the cortex regulate feedback inhibition of pyramidal neurons through suppression of somatostatin-expressing (SST) interneurons and, reciprocally, SST neurons inhibit VIP neurons. Although VIP neuron activity in the primary visual cortex (V1) of mouse is highly correlated with locomotion, the relevance of locomotion-related VIP neuron activity to visual coding is not known. Here we show that VIP neurons in mouse V1 respond strongly to low contrast front-to-back motion that is congruent with self-motion during locomotion but are suppressed by other directions and contrasts. VIP and SST neurons have complementary contrast tuning. Layer 2/3 contains a substantially larger population of low contrast preferring pyramidal neurons than deeper layers, and layer 2/3 (but not deeper layer) pyramidal neurons show bias for front-to-back motion specifically at low contrast. Network modeling indicates that VIP-SST mutual antagonism regulates the gain of the cortex to achieve sensitivity to specific weak stimuli without compromising network stability.


Assuntos
Interneurônios/fisiologia , Locomoção/fisiologia , Peptídeo Intestinal Vasoativo/metabolismo , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Animais , Camundongos
14.
Ann Neurol ; 88(5): 956-969, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32827225

RESUMO

OBJECTIVE: Deep brain stimulation (DBS) is a treatment option for refractory chronic cluster headache (CCH). Despite several recent prospective case series reporting a good outcome, the effectiveness and the optimal stimulation target of DBS for CCH remain unclear. We aimed to obtain precise estimates and predictors of long-term pain relief in an individual patient data meta-analysis. Furthermore, we aimed to construct a probabilistic stimulation map of effective DBS. METHODS: We invited investigators of published cohorts of patients undergoing DBS for CCH, identified by a systematic review of MEDLINE from inception to Febuary 15, 2019, to provide individual patient data on baseline covariates, pre- and postoperative headache scores at median (12-month) and long-term follow-up, in addition to individual imaging data to obtain individual electrode positions. We calculated a stimulation map using voxel-wise statistical analysis. We used multiple regression analysis to estimate predictors of pain relief. RESULTS: Among 40 patients from four different cohorts representing ~50% of all previously published cases, we found a significant 77% mean reduction in headache attack frequency over a mean follow-up of 44 months, with an overall response rate of 75%. Positive outcome was not associated with baseline covariates. We identified 2 hotspots of stimulation covering the midbrain ventral and retrorubral tegmentum. INTERPRETATION: This study supports the hypothesis that DBS provides long-term pain relief for the majority of CCH patients. Our stimulation map of the region of influence of therapeutic DBS identified an optimal anatomical target site that can help surgeons to guide their surgical planning in the future. ANN NEUROL 2020;88:956-969.


Assuntos
Cefaleia Histamínica/terapia , Estimulação Encefálica Profunda/métodos , Doença Crônica , Cefaleia Histamínica/prevenção & controle , Humanos , Procedimentos Neurocirúrgicos , Resultado do Tratamento
15.
Molecules ; 25(15)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32751914

RESUMO

In this study, a novel hybrid surrogate machine learning model based on a feedforward neural network (FNN) and one step secant algorithm (OSS) was developed to predict the load-bearing capacity of concrete-filled steel tube columns (CFST), whereas the OSS was used to optimize the weights and bias of the FNN for developing a hybrid model (FNN-OSS). For achieving this goal, an experimental database containing 422 instances was firstly gathered from the literature and used to develop the FNN-OSS algorithm. The input variables in the database contained the geometrical characteristics of CFST columns, and the mechanical properties of two CFST constituent materials, i.e., steel and concrete. Thereafter, the selection of the appropriate parameters of FNN-OSS was performed and evaluated by common statistical measurements, for instance, the coefficient of determination (R2), root mean square error (RMSE), and mean absolute error (MAE). In the next step, the prediction capability of the best FNN-OSS structure was evaluated in both global and local analyses, showing an excellent agreement between actual and predicted values of the load-bearing capacity. Finally, an in-depth investigation of the performance and limitations of FNN-OSS was conducted from a structural engineering point of view. The results confirmed the effectiveness of the FNN-OSS as a robust algorithm for the prediction of the CFST load-bearing capacity.


Assuntos
Indústria da Construção/métodos , Materiais de Construção/análise , Engenharia/métodos , Aprendizado de Máquina , Redes Neurais de Computação , Aço/análise , Suporte de Carga , Bases de Dados Factuais , Modelos Teóricos
16.
Materials (Basel) ; 13(10)2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32408473

RESUMO

In this paper, the main objectives are to investigate and select the most suitable parameters used in particle swarm optimization (PSO), namely the number of rules (nrule), population size (npop), initial weight (wini), personal learning coefficient (c1), global learning coefficient (c2), and velocity limits (fv), in order to improve the performance of the adaptive neuro-fuzzy inference system in determining the buckling capacity of circular opening steel beams. This is an important mechanical property in terms of the safety of structures under subjected loads. An available database of 3645 data samples was used for generation of training (70%) and testing (30%) datasets. Monte Carlo simulations, which are natural variability generators, were used in the training phase of the algorithm. Various statistical measurements, such as root mean square error (RMSE), mean absolute error (MAE), Willmott's index of agreement (IA), and Pearson's coefficient of correlation (R), were used to evaluate the performance of the models. The results of the study show that the performance of ANFIS optimized by PSO (ANFIS-PSO) is suitable for determining the buckling capacity of circular opening steel beams, but is very sensitive under different PSO investigation and selection parameters. The findings of this study show that nrule = 10, npop = 50, wini = 0.1 to 0.4, c1 = [1, 1.4], c2 = [1.8, 2], fv = 0.1, which are the most suitable selection values to ensure the best performance for ANFIS-PSO. In short, this study might help in selection of suitable PSO parameters for optimization of the ANFIS model.

17.
Materials (Basel) ; 13(5)2020 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-32156033

RESUMO

Concrete filled steel tubes (CFSTs) show advantageous applications in the field of construction, especially for a high axial load capacity. The challenge in using such structure lies in the selection of many parameters constituting CFST, which necessitates defining complex relationships between the components and the corresponding properties. The axial capacity (Pu) of CFST is among the most important mechanical properties. In this study, the possibility of using a feedforward neural network (FNN) to predict Pu was investigated. Furthermore, an evolutionary optimization algorithm, namely invasive weed optimization (IWO), was used for tuning and optimizing the FNN weights and biases to construct a hybrid FNN-IWO model and improve its prediction performance. The results showed that the FNN-IWO algorithm is an excellent predictor of Pu, with a value of R2 of up to 0.979. The advantage of FNN-IWO was also pointed out with the gains in accuracy of 47.9%, 49.2%, and 6.5% for root mean square error (RMSE), mean absolute error (MAE), and R2, respectively, compared with simulation using the single FNN. Finally, the performance in predicting the Pu in the function of structural parameters such as depth/width ratio, thickness of steel tube, yield stress of steel, concrete compressive strength, and slenderness ratio was investigated and discussed.

18.
eNeuro ; 4(5)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28932809

RESUMO

Transgenic mouse lines are invaluable tools for neuroscience but, as with any technique, care must be taken to ensure that the tool itself does not unduly affect the system under study. Here we report aberrant electrical activity, similar to interictal spikes, and accompanying fluorescence events in some genotypes of transgenic mice expressing GCaMP6 genetically encoded calcium sensors. These epileptiform events have been observed particularly, but not exclusively, in mice with Emx1-Cre and Ai93 transgenes, of either sex, across multiple laboratories. The events occur at >0.1 Hz, are very large in amplitude (>1.0 mV local field potentials, >10% df/f widefield imaging signals), and typically cover large regions of cortex. Many properties of neuronal responses and behavior seem normal despite these events, although rare subjects exhibit overt generalized seizures. The underlying mechanisms of this phenomenon remain unclear, but we speculate about possible causes on the basis of diverse observations. We encourage researchers to be aware of these activity patterns while interpreting neuronal recordings from affected mouse lines and when considering which lines to study.


Assuntos
Cálcio/metabolismo , Córtex Cerebral/fisiopatologia , Epilepsia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Neurônios/fisiologia , Animais , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/metabolismo , Modelos Animais de Doenças , Doxiciclina/farmacologia , Epilepsia/genética , Epilepsia/patologia , Epilepsia/fisiopatologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Integrases , Camundongos , Camundongos Transgênicos
19.
Sci Rep ; 6: 27716, 2016 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-27291288

RESUMO

Topological insulators (TIs) are bulk insulators with exotic 'topologically protected' surface conducting modes. It has recently been pointed out that when stacked together, interactions between surface modes can induce diverse phases including the TI, Dirac semimetal, and Weyl semimetal. However, currently a full experimental understanding of the conditions under which topological modes interact is lacking. Here, working with multilayers of the TI Sb2Te3 and the band insulator GeTe, we provide experimental evidence of multiple topological modes in a single Sb2Te3-GeTe-Sb2Te3 structure. Furthermore, we show that reducing the thickness of the GeTe layer induces a phase transition from a Dirac-like phase to a gapped phase. By comparing different multilayer structures we demonstrate that this transition occurs due to the hybridisation of states associated with different TI films. Our results demonstrate that the Sb2Te3-GeTe system offers strong potential towards manipulating topological states as well as towards controlledly inducing various topological phases.

20.
Brain Res ; 1600: 70-83, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25452020

RESUMO

Glutamate N-methyl-D-aspartate receptors (NMDARs) in the medial prefrontal cortex (mPFC) and hippocampus may play an integral role in complex cognitive and social deficits associated with a number of psychiatric illnesses including autism, mood disorders, and schizophrenia. We used localized infusions of adeno-associated virus Cre-recombinase in adult, targeted knock-in mice with loxP sites flanking exons 11-22 of the NR1 gene to investigate the effects of chronic NMDAR dysfunction in the mPFC and CA3 hippocampus on cognitive and social behavior. A 5-choice serial reaction time task (5-CSRTT) was used to monitor aspects of cognitive function that included attention and response inhibition. Social behavior was assessed using Crowley׳s sociability and preference for social novelty protocol. Chronic NMDAR dysfunction localized to the anterior cingulate/prelimbic mPFC or dorsal CA3 hippocampus differentially affected the response inhibition and social interaction. mPFC NR1-deletion increased perseverative responding in the 5-CSRTT and enhanced preference for social novelty, whereas CA3 NR1-deletion increased premature responding in the 5-CSRTT and decreased social approach behavior. These findings suggest that mPFC and CA3 NMDARs play selective roles in regulating compulsive and impulsive behavior, respectively. Furthermore, these findings are consistent with emerging evidence that these behaviors are mediated by distinct, albeit overlapping, neural circuits. Our data also suggest that NMDARs in these regions uniquely contribute to the expression of normal social behavior. In this case, mPFC and CA3 NMDARs appear to inhibit and facilitate aspects of social interaction, respectively. The latter dissociation raises the possibility that distinct circuits contribute to the expression of social intrusiveness and impoverished social interaction.


Assuntos
Cognição/fisiologia , Hipocampo/fisiologia , Comportamento Impulsivo/fisiologia , Córtex Pré-Frontal/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Comportamento Social , Animais , Deleção de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tempo de Reação , Receptores de N-Metil-D-Aspartato/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...