Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Physiol Biochem ; 122(2): 54-60, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26707268

RESUMO

CONTEXT: Insulin analogues are largely used for the treatment of diabetic patients, but concerns have been raised about their mitogenic/anti-apoptotic potential. It is therefore important to evaluate these analogues in different cell systems. OBJECTIVE: The aim of this work was to establish the pharmacological profiles of insulin analogues towards PI-3 kinase/Akt pathway in INS-1 ß-pancreatic cells. METHODS: Bioluminescence Resonance Energy Transfer (BRET), in cell western and caspase 3/7 assays, was used to study the effects of ligands. RESULTS: Among the five analogues evaluated, only glargine stimulated PI-3 kinase/Akt pathway with higher efficiency than insulin, whereas glargine's metabolite M1 was less efficient. However, glargine did not show higher anti-apoptotic efficiency than insulin. CONCLUSION: Glargine was more efficient than insulin for the activation of PI-3 kinase/Akt pathway, but not for the inhibition of caspase 3/7 activity. Moreover, glargine's metabolite M1 displayed lower efficiency than insulin towards PI-3 kinase/Akt activation and caspase 3/7 inhibition.


Assuntos
Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Insulina/análogos & derivados , Insulina/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular , Insulina Glargina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Fosfatos de Fosfatidilinositol/biossíntese , Ratos
2.
PLoS One ; 7(7): e41992, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22848683

RESUMO

BACKGROUND: In diabetic patients, the pharmacokinetics of injected human insulin does not permit optimal control of glycemia. Fast and slow acting insulin analogues have been developed, but they may have adverse properties, such as increased mitogenic or anti-apoptotic signaling. Insulin/IGF1 hybrid receptors (IR/IGF1R), present in most tissues, have been proposed to transmit biological effects close to those of IGF1R. However, the study of hybrid receptors is difficult because of the presence of IR and IGF1R homodimers. Our objective was to perform the first study on the pharmacological properties of the five marketed insulin analogues towards IR/IGF1R hybrids. METHODOLOGY: To study the effect of insulin analogues on IR/IGF1R hybrids, we used our previously developed Bioluminescence Resonance Energy Transfer (BRET) assay that permits specific analysis of the pharmacological properties of hybrid receptors. Moreover, we have developed a new, highly sensitive BRET-based assay to monitor phophatidylinositol-3 phosphate (PIP(3)) production in living cells. Using this assay, we performed a detailed pharmacological analysis of PIP(3) production induced by IGF1, insulin and insulin analogues in living breast cancer-derived MCF-7 and MDA-MB231 cells. RESULTS: Among the five insulin analogues tested, only glargine stimulated IR/IGF1R hybrids with an EC50 that was significantly lower than insulin and close to that of IGF1. Glargine more efficiently stimulated PIP(3) production in MCF-7 cells but not in MDA-MB231 cells as compared to insulin. In contrast, glargine metabolites M1 and M2 showed lower potency for hybrid receptors stimulation, PIP(3) production, Akt and Erk1/2 phosphorylation and DNA synthesis in MCF-7 cells, compared to insulin. CONCLUSION: Glargine, possibly acting through IR/IGF1R hybrids, displays higher potency, whereas its metabolites M1 and M2 display lower potency than insulin for the stimulation of proliferative/anti-apoptotic pathways in MCF-7 cells.


Assuntos
Insulina de Ação Prolongada/metabolismo , Insulina de Ação Prolongada/farmacologia , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Células HEK293 , Humanos , Insulina Glargina , Células MCF-7 , Fosfatos de Fosfatidilinositol/biossíntese , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...