Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(26): e2312340, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38578242

RESUMO

The advancement of active electrode materials is essential to meet the demand for multifaceted soft robotic interactions. In this study, a new type of porous carbonaceous sphere (PCS) for a multimodal soft actuator capable of both magnetoactive and electro-ionic responses is reported. The PCS, derived from the simultaneous oxidative and reductive breakdown of specially designed cobalt-based metal-organic frameworks (Co-MOFs) with varying metal-to-ligand ratios, exhibits a high specific surface area of 529 m2 g-1 and a saturated magnetization of 142.7 Am2 kg-1. The size of the PCS can be controlled through the Ostwald ripening mechanism, while the porous structure can be regulated by adjusting the metal-to-ligand mol ratio. Its exceptional compatibility with poly(3,4-ethylene-dioxythiophene)-poly(styrenesulfonate) enables the creation of uniform electrode, crucial for producing soft actuators that work in both magnetic and electrical fields. Operated at an ultralow voltage of 1 V, the PCS-based actuator generates a blocking force of 47.5 mN and exhibits significant bending deflection even at an oscillation frequency of 10 Hz. Employing this simultaneous multimodal actuation ensures the dynamic and complex motions of a balancing bird robot and a dynamic eagle robot. This advancement marks a significant step toward the realization of more dynamic and versatile soft robotic systems.

2.
Adv Sci (Weinh) ; 11(14): e2307656, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38286669

RESUMO

Considerable research has been conducted on the application of functional nano-fillers to enhance the power generation capabilities of triboelectric nanogenerators (TENGs). However, these additives often exhibit a decrease in output power at higher concentration. Here, a Janus cobalt metal-organic framework-SEBS (JCMS) membrane is reported as a dual-purpose dielectric layer capable of efficiently capturing and blocking charges for high-performance TENGs. The JCMS is produced asymmetrically through gravitational sedimentation, employing spherical CoMOFs within a diluted SEBS solution. Beyond its dual dielectric characteristics, the JCMS showcases exceptional mechanical durability, displaying notable stretchability of up to 475% and remarkable resilience when subjected to diverse mechanical pressures. Consequently, the JCMS-TENG produces a maximum peak-to-peak voltage of 936 V, a current of 42.8 µA, and a power density of 10.89 W m- 2 when exposed to an external force of 10 N at a 5 Hz frequency. This investigation highlights the potential of JCMS-TENGs with unique structures, known for their exceptional energy harvesting capabilities, mechanical strength, and flexibility. Additionally, the promising prospects of easily produced asymmetric structures is emphasized with bifunctionalities for developing efficient and flexible MOFs-based TENGs. These advancements are well-suited for self-powered wearables, rehabilitation devices, and energy harvesters.

3.
Nat Commun ; 15(1): 435, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200009

RESUMO

Electro-active ionic soft actuators have been intensively investigated as an artificial muscle for soft robotics due to their large bending deformations at low voltages, small electric power consumption, superior energy density, high safety and biomimetic self-sensing actuation. However, their slow responses, poor durability and low bandwidth, mainly resulting from improper distribution of ionic conducting phase in polyelectrolyte membranes, hinder practical applications to real fields. We report a procedure to synthesize efficient polyelectrolyte membranes that have continuous conducting network suitable for electro-ionic artificial muscles. This functionally antagonistic solvent procedure makes amphiphilic Nafion molecules to assemble into micelles with ionic surfaces enclosing non-conducting cores. Especially, the ionic surfaces of these micelles combine together during casting process and form a continuous ionic conducting phase needed for high ionic conductivity, which boosts the performance of electro-ionic soft actuators by 10-time faster response and 36-time higher bending displacement. Furthermore, the developed muscle shows exceptional durability over 40 days under continuous actuation and broad bandwidth below 10 Hz, and is successfully applied to demonstrate an inchworm-mimetic soft robot and a kinetic tensegrity system.

4.
Sci Adv ; 9(50): eadk9752, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38091394

RESUMO

Tailoring transfer dynamics of mobile cations across solid-state electrolyte-electrode interfaces is crucial for high-performance electrochemical soft actuators. In general, actuation performance is directly proportional to the affinity of cations and anions in the electrolyte for the opposite electrode surfaces under an applied field. Herein, to maximize electrochemical actuation, we report an electronically conjugated polysulfonated covalent organic framework (pS-COF) used as a common electrolyte-electrode host for 1-ethyl-3-methylimidazolium cation embedded into a Nafion membrane. The pS-COF-based electrochemical actuator exhibits remarkable bending deflection at near-zero voltage (~0.01 V) and previously unattainable blocking force, which is 34 times higher than its own weight. The ultrafast step response shows a very short rising time of 1.59 seconds without back-relaxation, and substantial ultralow-voltage actuation at higher frequencies up to 5.0 hertz demonstrates good application prospects of common electrolyte-electrode hosts. A soft fluidic switch is constructed using the proposed soft actuator as a potential engineering application.

5.
Small ; 19(23): e2207140, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36908006

RESUMO

The advancement in smart devices and soft robotics necessitates the use of multiresponsive soft actuators with high actuation stroke and stable reversibility for their use in real-world applications. Here, this work reports a magnetically and electrically dual responsive soft actuator based on neodymium and iron bimetallic organic frameworks (NdFeMOFs@700). The ferromagnetic NdFeMOFs@700 exhibits a porous carbon structure with excellent magnetization saturation (166.96 emu g-1 ) which allows its application to a dual functional material in both magnetoactive and electro-ionic actuations. The electro-ionic soft actuator, which is fabricated using NdFeMOFs@700 and PEDOT-PSS, demonstrates 4.5 times higher ionic charge storage capacity (68.21 mF cm-2 ) and has excellent cycle stability compared with the PEDOT-PSS based actuator. Under a low sinusoidal input voltage of 1 V, the dual-responsive actuator displays bending displacement of 15.46 mm and also generates deflection of 10 mm at 50 mT. Present results show that the ferromagnetic bimetallic organic frameworks can open a new way to make dual responsive soft actuators due to the hierarchically porous structures with its high redox activity, superior magnetic properties, and larger electrochemical capacitance. With the NdFeMOFs@700 based soft actuators, walking movement of a starfish robot is demonstrated by applying both the magnetic and electric fields.

6.
J Digit Imaging ; 36(3): 911-922, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36717518

RESUMO

The malignant tumors in nature share some common morphological characteristics. Radiomics is not only images but also data; we think that a probability exists in a set of radiomics signatures extracted from CT scan images of one cancer tumor in one specific organ also be utilized for overall survival prediction in different types of cancers in different organs. The retrospective study enrolled four data sets of cancer patients in three different organs (420, 157, 137, and 191 patients for lung 1 training, lung 2 testing, and two external validation set: kidney and head and neck, respectively). In the training set, radiomics features were obtained from CT scan images, and essential features were chosen by LASSO algorithm. Univariable and multivariable analyses were then conducted to find a radiomics signature via Cox proportional hazard regression. The Kaplan-Meier curve was performed based on the risk score. The integrated time-dependent area under the ROC curve (iAUC) was calculated for each predictive model. In the training set, Kaplan-Meier curve classified patients as high or low-risk groups (p-value < 0.001; log-rank test). The risk score of radiomics signature was locked and independently evaluated in the testing set, and two external validation sets showed significant differences (p-value < 0.05; log-rank test). A combined model (radiomics + clinical) showed improved iAUC in lung 1, lung 2, head and neck, and kidney data set are 0.621 (95% CI 0.588, 0.654), 0.736 (95% CI 0.654, 0.819), 0.732 (95% CI 0.655, 0.809), and 0.834 (95% CI 0.722, 0.946), respectively. We believe that CT-based radiomics signatures for predicting overall survival in various cancer sites may exist.


Assuntos
Neoplasias , Humanos , Estudos Retrospectivos , Neoplasias/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Pescoço , Rim
7.
Adv Mater ; 34(35): e2203613, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35772104

RESUMO

There is growing demand for multiresponsive soft actuators for the realization of natural, safe, and complex motions in robotic interactions. In particular, soft actuators simultaneously stimulated by electrical and magnetic fields are always under development owing to their simple controllability and reliability during operation. Herein, magnetically and electrically driven dual-responsive soft actuators (MESAs) derived from novel nickel-based metal-organic frameworks (Ni-MOFs-700C), are reported. Nanoscale Ni-MOFs-700C has excellent electrochemical and magnetic properties that allow it to be used as a multifunctional material under both magnetoactive and electro-ionic actuations. The dual-responsive MESA exhibits a bending displacement of 30 mm and an ultrafast rising time of 1.5 s under a very low input voltage of 1 V and also exerts a bending deflection of 12.5 mm at 50 mT under a high excitation frequency of 5 Hz. By utilizing a dual-responsive MESA, the hovering motion of a hummingbird robot is demonstrated under magnetic and electrical stimuli.

8.
Adv Sci (Weinh) ; 8(23): e2102064, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34693658

RESUMO

Emerging technologies such as soft robotics, active biomedical devices, wearable electronics, haptic feedback systems, and healthcare systems require high-fidelity soft actuators showing reliable responses under multi-stimuli. In this study, the authors report an electro-active and photo-active soft actuator based on a vanadium oxide nanowire (VONW) hybrid film with greatly improved actuation performances. The VONWs directly grown on a cellulose fiber network increase the surface area up to 30-fold and boost the hydrophilicity owing to the presence of oxygen-rich functional groups in the nanowire surfaces. Taking advantage of the high surface area and hydrophilicity of VONWs, a soft thermo-hygroscopic VONW actuator capable of being controlled by both light and electric sources shows greatly enhanced actuation deformation by almost 70% and increased actuation speed over 3 times during natural convection cooling. Most importantly, the proposed VONW actuator exhibits a remarkably improved blocking force of up to 200% compared with a bare paper actuator under light stimulation, allowing them to realize a complex kirigami pop-up and to accomplish repeatable shape transformation from a 2D planar surface to a 3D configuration.

9.
Int J Mol Sci ; 22(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34502160

RESUMO

Early identification of epidermal growth factor receptor (EGFR) and Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations is crucial for selecting a therapeutic strategy for patients with non-small-cell lung cancer (NSCLC). We proposed a machine learning-based model for feature selection and prediction of EGFR and KRAS mutations in patients with NSCLC by including the least number of the most semantic radiomics features. We included a cohort of 161 patients from 211 patients with NSCLC from The Cancer Imaging Archive (TCIA) and analyzed 161 low-dose computed tomography (LDCT) images for detecting EGFR and KRAS mutations. A total of 851 radiomics features, which were classified into 9 categories, were obtained through manual segmentation and radiomics feature extraction from LDCT. We evaluated our models using a validation set consisting of 18 patients derived from the same TCIA dataset. The results showed that the genetic algorithm plus XGBoost classifier exhibited the most favorable performance, with an accuracy of 0.836 and 0.86 for detecting EGFR and KRAS mutations, respectively. We demonstrated that a noninvasive machine learning-based model including the least number of the most semantic radiomics signatures could robustly predict EGFR and KRAS mutations in patients with NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/genética , Aprendizado de Máquina , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Biomarcadores , Carcinoma Pulmonar de Células não Pequenas/patologia , Receptores ErbB/genética , Feminino , Humanos , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Curva ROC , Reprodutibilidade dos Testes , Aprendizado de Máquina Supervisionado , Tomografia Computadorizada por Raios X
10.
Nat Commun ; 11(1): 5358, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-33097728

RESUMO

In the field of bioinspired soft robotics, to accomplish sophisticated tasks in human fingers, electroactive artificial muscles are under development. However, most existing actuators show a lack of high bending displacement and irregular response characteristics under low input voltages. Here, based on metal free covalent triazine frameworks (CTFs), we report an electro-ionic soft actuator that shows high bending deformation under ultralow input voltages that can be implemented as a soft robotic touch finger on fragile displays. The as-synthesized CTFs, derived from a polymer of intrinsic microporosity (PIM-1), were combined with poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) to make a flexible electrode for a high-performance electro-ionic soft actuator. The proposed soft touch finger showed high peak-to-peak displacement of 17.0 mm under ultralow square voltage of ±0.5 V, with 0.1 Hz frequency and 4 times reduced phase delay in harmonic response compared with that of a pure PEDOT-PSS-based actuator. The significant actuation performance is mainly due to the unique physical and chemical configurations of CTFs electrode with highly porous and electrically conjugated networks. On a fragile display, the developed soft robotic touch finger array was successfully used to perform soft touching, similar to that of a real human finger; device was used to accomplish a precise task, playing electronic piano.

11.
ACS Appl Mater Interfaces ; 12(10): 11657-11668, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32109039

RESUMO

Herein, we report a straigthforward procedure to prepare an excellent intertwined nanosponge solid-state polymer electrolyte (INSPE) for highly bendable, rollable, and foldable lithium-ion batteries (LIBs). The mechanically reliable and electrochemically superior INSPE is conjugated with intertwined nanosponge (IN) poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-co-HFP) and ion-conducting polymer electrolyte (PE) containing poly(ethylene glycol) diacrylate (PEGDA), succinonitrile (SCN) plasticizer, and lithium bis(trifluoromethanesilfonyl)imide (LiTFSI). The conjugated INSPE has both high strength with great flexibility (tensile strength of 2.1 MPa, elongation of 36.7%), and excellent ionic conductivity (1.04 × 10-3 S·cm-1, similar to the values of liquid electrolytes). As a result of such special combination, the as-prepared INSPE retains almost 100% of its ionic conductivity when subjected to many types of severe mechanical deformations. Therefore, the INSPE is successfully applied to bendable, rollable, and foldable LIBs that show excellent energy storage performance despite the intense mechanical deformations.

12.
Adv Sci (Weinh) ; 6(23): 1901711, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31832318

RESUMO

Here, inspired by mechanoreceptors in the human body, a self-sensing ionic soft actuator is developed that precisely senses the bending motions during actuating utilizing a 3D graphene mesh electrode. The graphene mesh electrode has the permeability of mobile ions inside the ionic exchangeable polymer and shows low electrical resistance of 6.25 Ω Sq-1, maintaining high electrical conductivity in large bending deformations of 180°. In this sensing system, the graphene woven mesh is embedded inside ionic polymer membrane to interact with mobile ions and to trace their movements. The migration of mobile ions inside the membrane induces an electrical signal on the mesh and provides the information regarding ion distribution, which is proven to be highly correlated with the bending deformation of the actuator. Using this integrated self-sensing system, the responses of an ionic actuator to various input stimulations are precisely estimated for both direct current and alternating current inputs. Even though the generated displacement is extremely small around 300 µm at very low driving voltage of 0.1 V, high level accuracy (96%) of estimated deformations could be achieved using the self-sensing actuator system.

13.
ACS Appl Mater Interfaces ; 11(43): 40451-40460, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31599566

RESUMO

A novel crumpled quaternary sulfur-doped nickel cobalt selenide nanoarchitecture grown on carbon cloth (S-(NiCo)Se/CC) has been successfully synthesized as an electrode material for high-performance ionic polymer-carbon cloth composite (IP-CCC) actuators. A facile one-step solvothermal process has been introduced here to synthesize S-(NiCo)Se/CC, resolving the time-consuming, complicated, and costly problems of existing methods. Taking advantage of the outstanding electron transport kinetics and three-dimensionally interconnected nature of the transition-metal chalcogenide structure, the hybrid carbon cloth electrode with quaternary sulfur-doped selenide nanoarchitectures exhibits low electrical resistivity (3 times lower than that of bare CC), high areal capacitance (409 mF/cm2), and excellent cycle stability (over 4000 cycles). Moreover, due to the synergistic effect between S-(NiCo)Se and a carbon cloth substrate, the S-(NiCo)Se/CC electrode-based actuator exhibits high blocking force (38.5 mN), 6 h durability, and large bending strain (0.47%). Compared with other actuators reported in the literature, the S-(NiCo)Se/CC electrode-based actuator shows much higher normalized blocking force, leading to opening of new potential applications in the field of next-generation soft electronics. Moreover, stacked multiple IP-CCC actuators in parallel exhibit an exceptional blocking force of 0.174 N under direct current 4 V.

14.
Adv Sci (Weinh) ; 6(5): 1801196, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30886790

RESUMO

Electroactive ionic soft actuators, a type of artificial muscles containing a polymer electrolyte membrane sandwiched between two electrodes, have been intensively investigated owing to their potential applications to bioinspired soft robotics, wearable electronics, and active biomedical devices. However, the design and synthesis of an efficient polymer electrolyte suitable for ion migration have been major challenges in developing high-performance ionic soft actuators. Herein, a highly bendable ionic soft actuator based on an unprecedented block copolymer is reported, i.e., polystyrene-b-poly(1-ethyl-3-methylimidazolium-4-styrenesulfonate) (PS-b-PSS-EMIm), with a functionally antagonistic core-shell architecture that is specifically designed as an ionic exchangeable polymer electrolyte. The corresponding actuator shows exceptionally good actuation performance, with a high displacement of 8.22 mm at an ultralow voltage of 0.5 V, a fast rise time of 5 s, and excellent durability over 14 000 cycles. It is envisaged that the development of this high-performance ionic soft actuator could contribute to the progress toward the realization of the aforementioned applications. Furthermore, the procedure described herein can also be applied for developing novel polymer electrolytes related to solid-state lithium batteries and fuel cells.

15.
Sci Robot ; 4(33)2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-33137782

RESUMO

Existing ionic artificial muscles still require a technology breakthrough for much faster response speed, higher bending strain, and longer durability. Here, we report an MXene artificial muscle based on ionically cross-linked Ti3C2T x with poly(3,4 ethylenedioxythiophene)-poly(styrenesulfonate), showing ultrafast rise time of within 1 s in DC responses, extremely large bending strain up to 1.37% in very low input voltage regime (0.1 to 1 V), long-term cyclic stability of 97% up to 18,000 cycles, markedly reduced phase delay, and very broad frequency bandwidth up to 20 Hz with good structural reliability without delamination under continuous electrical stimuli. These artificial muscles were successfully applied to make an origami-inspired narcissus flower robot as a wearable brooch and dancing butterflies and leaves on a tree as a kinetic art piece. These successful demonstrations elucidate the wide potential of MXene-based soft actuators for the next-generation soft robotic devices including wearable electronics and kinetic art pieces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA