Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Retrovirology ; 17(1): 25, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32807178

RESUMO

BACKGROUND: Alternative splicing is a key step in Human Immunodeficiency Virus type 1 (HIV-1) replication that is tightly regulated both temporally and spatially. More than 50 different transcripts can be generated from a single HIV-1 unspliced pre-messenger RNA (pre-mRNA) and a balanced proportion of unspliced and spliced transcripts is critical for the production of infectious virions. Understanding the mechanisms involved in the regulation of viral RNA is therefore of potential therapeutic interest. However, monitoring the regulation of alternative splicing events at a transcriptome-wide level during cell infection is challenging. Here we used the long-read cDNA sequencing developed by Oxford Nanopore Technologies (ONT) to explore in a quantitative manner the complexity of the HIV-1 transcriptome regulation in infected primary CD4+ T cells. RESULTS: ONT reads mapping to the viral genome proved sufficiently long to span all possible splice junctions, even distant ones, and to be assigned to a total of 150 exon combinations. Fifty-three viral RNA isoforms, including 14 new ones were further considered for quantification. Relative levels of viral RNAs determined by ONT sequencing showed a high degree of reproducibility, compared favourably to those produced in previous reports and highly correlated with quantitative PCR (qPCR) data. To get further insights into alternative splicing regulation, we then compiled quantifications of splice site (SS) usage and transcript levels to build "splice trees", a quantitative representation of the cascade of events leading to the different viral isoforms. This approach allowed visualizing the complete rewiring of SS usages upon perturbation of SS D2 and its impact on viral isoform levels. Furthermore, we produced the first dynamic picture of the cascade of events occurring between 12 and 24 h of viral infection. In particular, our data highlighted the importance of non-coding exons in viral RNA transcriptome regulation. CONCLUSION: ONT sequencing is a convenient and reliable strategy that enabled us to grasp the dynamic of the early splicing events modulating the viral RNA landscape in HIV-1 infected cells.


Assuntos
Processamento Alternativo/genética , Infecções por HIV/virologia , HIV-1/genética , RNA Viral/genética , Linfócitos T CD4-Positivos/virologia , Regulação Viral da Expressão Gênica , Humanos , Sequenciamento por Nanoporos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Sítios de Splice de RNA , RNA Viral/metabolismo , Transcriptoma , Vírion/genética
2.
Nucleic Acids Res ; 46(15): 7480-7494, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-29982617

RESUMO

High-throughput sequencing of in vitro selection could artificially provide large quantities of relic sequences from known times of molecular evolution. Here, we demonstrate how it can be used to reconstruct an empirical genealogical evolutionary (EGE) tree of an aptamer family. In contrast to classical phylogenetic trees, this tree-diagram represents proliferation and extinction of sequences within a population during rounds of selection. Such information, which corresponds to their evolutionary fitness, is used to infer which sequences may have been mutated through the selection process that led to the appearance and spreading of new sequences. This approach was validated by the re-analysis of an in vitro selection that had previously identified an aptamer against Annexin A2. It revealed that this aptamer might be the descendant of a sequence that was more highly amplified in early rounds. It also succeeded in predicting improved variants of this aptamer and providing a means to understand the influence of selection pressure on evolution. This is the first demonstration that HTS can provide time-lapse imaging of the evolutionary pathway that is taken by a macromolecule during in vitro selection to evolve by successive mutations through better fitness.


Assuntos
Aptâmeros de Nucleotídeos/genética , Evolução Molecular , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutação , Imagem com Lapso de Tempo/métodos , Proliferação de Células/genética , Aptidão Genética , Humanos , Células MCF-7 , Técnica de Seleção de Aptâmeros/métodos , Seleção Genética , Fatores de Tempo
3.
Pharmaceuticals (Basel) ; 9(4)2016 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-27973417

RESUMO

Aptamers are identified through an iterative process of evolutionary selection starting from a random pool containing billions of sequences. Simultaneously to the amplification of high-affinity candidates, the diversity in the pool is exponentially reduced after several rounds of in vitro selection. Until now, cloning and Sanger sequencing of about 100 sequences was usually used to identify the enriched candidates. However, High-Throughput Sequencing (HTS) is now extensively used to replace such low throughput sequencing approaches. Providing a deeper analysis of the library, HTS is expected to accelerate the identification of aptamers as well as to identify aptamers with higher affinity. It is also expected that it can provide important information on the binding site of the aptamers. Nevertheless, HTS requires handling a large amount of data that is only possible through the development of new in silico methods. Here, this review presents these different strategies that have been recently developed to improve the identification and characterization of aptamers using HTS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA