Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 9(6)2019 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-31159469

RESUMO

Carboplatin (CAR) is a second generation platinum-based compound emerging as one of the most widely used anticancer drugs to treat a variety of tumors. In an attempt to address its dose-limiting toxicity and fast renal clearance, several delivery systems (DDSs) have been developed for CAR. However, unsuitable size range and low loading capacity may limit their potential applications. In this study, PAMAM G3.0 dendrimer was prepared and partially surface modified with methoxypolyethylene glycol (mPEG) for the delivery of CAR. The CAR/PAMAM G3.0@mPEG was successfully obtained with a desirable size range and high entrapment efficiency, improving the limitations of previous CAR-loaded DDSs. Cytocompatibility of PAMAM G3.0@mPEG was also examined, indicating that the system could be safely used. Notably, an in vitro release test and cell viability assays against HeLa, A549, and MCF7 cell lines indicated that CAR/PAMAM G3.0@mPEG could provide a sustained release of CAR while fully retaining its bioactivity to suppress the proliferation of cancer cells. These obtained results provide insights into the potential of PAMAM G3.0@mPEG dendrimer as an efficient delivery system for the delivery of a drug that has strong side effects and fast renal clearance like CAR, which could be a promising approach for cancer treatment.


Assuntos
Carboplatina/química , Dendrímeros/química , Portadores de Fármacos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dendrímeros/toxicidade , Portadores de Fármacos/toxicidade , Liberação Controlada de Fármacos , Humanos , Teste de Materiais , Polietilenoglicóis/química , Propriedades de Superfície
2.
Pharmaceutics ; 11(3)2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30875948

RESUMO

Polymer coating has drawn increasing attention as a leading strategy to overcome the drawbacks of superparamagnetic iron oxide nanoparticles (SPIONs) in targeted delivery of anticancer drugs. In this study, SPIONs were modified with heparin-Poloxamer (HP) shell to form a SPION@HP core-shell system for anticancer drug delivery. The obtained formulation was characterized by techniques including transmission electron microscopy (TEM), Fourier transform infrared spectra (FT-IR), vibration sample magnetometer (VSM), proton nuclear magnetic resonance (¹H-NMR), and powder X-ray diffraction (XRD). Results showed the successful attachment of HP shell on the surface of SPION core and the inability to cause considerable effects to the crystal structure and unique magnetic nature of SPION. The core-shell system maintains the morphological features of SPIONs and the desired size range. Notably, Doxorubicin (DOX), an anticancer drug, was effectively entrapped into the polymeric shell of SPION@HP, showing a loading efficiency of 66.9 ± 2.7% and controlled release up to 120 h without any initial burst effect. Additionally, MTT assay revealed that DOX-loaded SPION@HP exerted great anticancer effect against HeLa cells and could be safely used. These results pave the way for the application of SPION@HP as an effective targeted delivery system for cancer treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA