Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38617241

RESUMO

Tumor metastasis, the main cause of death in cancer patients, requires outgrowth of tumor cells after their dissemination and residence in microscopic niches. Nutrient sufficiency is a determinant of such outgrowth1. Fatty acids (FA) can be metabolized by cancer cells for their energetic and anabolic needs but impair the cytotoxicity of T cells in the tumor microenvironment (TME)2,3, thereby supporting metastatic progression. However, despite the important role of FA in metastatic outgrowth, the regulation of intratumoral FA is poorly understood. In this report, we show that tumor endothelium actively promotes tumor growth and restricts anti-tumor cytolysis by transferring FA into developing metastatic tumors. This process uses transendothelial fatty acid transport via endosome cargo trafficking in a mechanism that requires mTORC1 activity. Thus, tumor burden was significantly reduced upon endothelial-specific targeted deletion of Raptor, a unique component of the mTORC1 complex (RptorECKO). In vivo trafficking of a fluorescent palmitic acid analog to tumor cells and T cells was reduced in RptorECKO lung metastatic tumors, which correlated with improved markers of T cell cytotoxicity. Combination of anti-PD1 with RAD001/everolimus, at a low dose that selectively inhibits mTORC1 in endothelial cells4, impaired FA uptake in T cells and reduced metastatic disease, corresponding to improved anti-tumor immunity. These findings describe a novel mechanism of transendothelial fatty acid transfer into the TME during metastatic outgrowth and highlight a target for future development of therapeutic strategies.

2.
Sci Immunol ; 8(83): eadd1153, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37146128

RESUMO

The tumor-associated vasculature imposes major structural and biochemical barriers to the infiltration of effector T cells and effective tumor control. Correlations between stimulator of interferon genes (STING) pathway activation and spontaneous T cell infiltration in human cancers led us to evaluate the effect of STING-activating nanoparticles (STANs), which are a polymersome-based platform for the delivery of a cyclic dinucleotide STING agonist, on the tumor vasculature and attendant effects on T cell infiltration and antitumor function. In multiple mouse tumor models, intravenous administration of STANs promoted vascular normalization, evidenced by improved vascular integrity, reduced tumor hypoxia, and increased endothelial cell expression of T cell adhesion molecules. STAN-mediated vascular reprogramming enhanced the infiltration, proliferation, and function of antitumor T cells and potentiated the response to immune checkpoint inhibitors and adoptive T cell therapy. We present STANs as a multimodal platform that activates and normalizes the tumor microenvironment to enhance T cell infiltration and function and augments responses to immunotherapy.


Assuntos
Nanopartículas , Neoplasias , Camundongos , Animais , Humanos , Imunoterapia , Linfócitos T , Modelos Animais de Doenças , Microambiente Tumoral
3.
Cancer Res Commun ; 2(7): 694-705, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36381236

RESUMO

Glutamine is the most abundant non-essential amino acid in blood stream; yet it's concentration in tumor interstitium is markedly lower than that in the serum, reflecting the huge demand of various cell types in tumor microenvironment for glutamine. While many studies have investigated glutamine metabolism in tumor epithelium and infiltrating immune cells, the role of glutamine metabolism in tumor blood vessels remains unknown. Here, we report that inducible genetic deletion of glutaminase (GLS) specifically in host endothelium, GLSECKO, impairs tumor growth and metastatic dissemination in vivo. Loss of GLS decreased tumor microvascular density, increased perivascular support cell coverage, improved perfusion, and reduced hypoxia in mammary tumors. Importantly, chemotherapeutic drug delivery and therapeutic efficacy were improved in tumor-bearing GLSECKO hosts or in combination with GLS inhibitor, CB839. Mechanistically, loss of GLS in tumor endothelium resulted in decreased leptin levels, and exogenous recombinant leptin rescued tumor growth defects in GLSECKO mice. Together, these data demonstrate that inhibition of endothelial glutamine metabolism normalizes tumor vessels, reducing tumor growth and metastatic spread, improving perfusion, and reducing hypoxia, and enhancing chemotherapeutic delivery. Thus, targeting glutamine metabolism in host vasculature may improve clinical outcome in patients with solid tumors.


Assuntos
Glutaminase , Glutamina , Camundongos , Animais , Glutaminase/genética , Glutamina/metabolismo , Leptina , Linhagem Celular Tumoral
4.
J Clin Invest ; 131(4)2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33320840

RESUMO

Rapidly proliferating tumor and immune cells need metabolic programs that support energy and biomass production. The amino acid glutamine is consumed by effector T cells and glutamine-addicted triple-negative breast cancer (TNBC) cells, suggesting that a metabolic competition for glutamine may exist within the tumor microenvironment, potentially serving as a therapeutic intervention strategy. Here, we report that there is an inverse correlation between glutamine metabolic genes and markers of T cell-mediated cytotoxicity in human basal-like breast cancer (BLBC) patient data sets, with increased glutamine metabolism and decreased T cell cytotoxicity associated with poor survival. We found that tumor cell-specific loss of glutaminase (GLS), a key enzyme for glutamine metabolism, improved antitumor T cell activation in both a spontaneous mouse TNBC model and orthotopic grafts. The glutamine transporter inhibitor V-9302 selectively blocked glutamine uptake by TNBC cells but not CD8+ T cells, driving synthesis of glutathione, a major cellular antioxidant, to improve CD8+ T cell effector function. We propose a "glutamine steal" scenario, in which cancer cells deprive tumor-infiltrating lymphocytes of needed glutamine, thus impairing antitumor immune responses. Therefore, tumor-selective targeting of glutamine metabolism may be a promising therapeutic strategy in TNBC.


Assuntos
Antineoplásicos/farmacologia , Linfócitos T CD8-Positivos/imunologia , Proteínas de Transporte/antagonistas & inibidores , Glutamina/imunologia , Imunidade Celular , Linfócitos do Interstício Tumoral/imunologia , Neoplasias de Mama Triplo Negativas/imunologia , Animais , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Proteínas de Transporte/imunologia , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Feminino , Glutamina/metabolismo , Xenoenxertos , Humanos , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/patologia , Camundongos , Camundongos Transgênicos , Transplante de Neoplasias , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
5.
Cancer Res ; 79(16): 4003-4008, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31362930

RESUMO

Metabolic reprogramming of cancer cells and the tumor microenvironment are emerging as key factors governing tumor growth, metastasis, and response to therapies including immune checkpoint inhibitors. It has been recognized that rapidly proliferating cancer cells, tumor-infiltrating lymphocytes, and vascular endothelial cells compete for oxygen and nutrients. Tumor cells and other cell types in the microenvironment not only compete for nutrients, but they also simultaneously produce immunosuppressive metabolites, leading to immune escape. In addition, commensal microbial metabolites can influence regulatory T cells and inflammation in the intestine, thus playing an essential role in cancer prevention or cancer promotion. In this review, we summarize recent advances on metabolic interactions among various cell types in the tumor microenvironment, with a focus on how these interactions affect tumor immunity. We also discuss the potential role of blood vessel metabolism in regulating immune cell trafficking and activation.


Assuntos
Neoplasias Colorretais/microbiologia , Gastroenterite/metabolismo , Microbioma Gastrointestinal/fisiologia , Linfócitos do Interstício Tumoral/metabolismo , Microambiente Tumoral/imunologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Gastroenterite/patologia , Microbioma Gastrointestinal/imunologia , Glicólise , Humanos , Linfócitos do Interstício Tumoral/patologia , Linfócitos T Reguladores/patologia , Linfócitos T Reguladores/fisiologia , Microambiente Tumoral/fisiologia
6.
Sci Signal ; 10(508)2017 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-29208682

RESUMO

Malignant tumors reprogram cellular metabolism to support cancer cell proliferation and survival. Although most cancers depend on a high rate of aerobic glycolysis, many cancer cells also display addiction to glutamine. Glutamine transporters and glutaminase activity are critical for glutamine metabolism in tumor cells. We found that the receptor tyrosine kinase EphA2 activated the TEAD family transcriptional coactivators YAP and TAZ (YAP/TAZ), likely in a ligand-independent manner, to promote glutamine metabolism in cells and mouse models of HER2-positive breast cancer. Overexpression of EphA2 induced the nuclear accumulation of YAP and TAZ and increased the expression of YAP/TAZ target genes. Inhibition of the GTPase Rho or the kinase ROCK abolished EphA2-dependent YAP/TAZ nuclear localization. Silencing YAP or TAZ substantially reduced the amount of intracellular glutamate through decreased expression of SLC1A5 and GLS, respectively, genes that encode proteins that promote glutamine uptake and metabolism. The regulatory DNA elements of both SLC1A5 and GLS contain TEAD binding sites and were bound by TEAD4 in an EphA2-dependent manner. In patient breast cancer tissues, EphA2 expression positively correlated with that of YAP and TAZ, as well as that of GLS and SLC1A5 Although high expression of EphA2 predicted enhanced metastatic potential and poor patient survival, it also rendered HER2-positive breast cancer cells more sensitive to glutaminase inhibition. The findings define a previously unknown mechanism of EphA2-mediated glutaminolysis through YAP/TAZ activation in HER2-positive breast cancer and identify potential therapeutic targets in patients.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Efrina-A2/metabolismo , Glutamina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fosfoproteínas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Sistema ASC de Transporte de Aminoácidos/genética , Sistema ASC de Transporte de Aminoácidos/metabolismo , Animais , Biomarcadores Tumorais/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Efrina-A2/genética , Feminino , Glutaminase/genética , Glutaminase/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Knockout , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Fosfoproteínas/genética , Receptor EphA2 , Fatores de Transcrição de Domínio TEA , Transativadores , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Células Tumorais Cultivadas , Proteínas de Sinalização YAP
7.
PLoS One ; 12(5): e0178648, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28552994

RESUMO

Cell penetrating peptides have long held great potential for delivery of biomolecular cargos for research, therapeutic and diagnostic purposes. They allow rapid, relatively nontoxic passage of a wide variety of biomolecules through the plasma membranes of living cells. However, CPP-based research tools and therapeutics have been stymied by poor efficiency in release from endosomes and a great deal of effort has been made to solve this 'endosomal escape problem.' Previously, we showed that use of a reversible, noncovalent coupling between CPP and cargo using calmodulin and a calmodulin binding motif allowed efficient delivery of cargo proteins to the cytoplasm in baby hamster kidney and other mammalian cell lines. The present report demonstrates the efficacy of our CPP-adaptor scheme for efficient delivery of model cargos to the cytoplasm using a variety of CPPs and adaptors. Effective overcoming of the endosomal escape problem is further demonstrated by the delivery of cargo to the nucleus, endoplasmic reticulum and peroxisomes by addition of appropriate subcellular localization signals to the cargos. CPP-adaptors were also used to deliver cargo to myotubes, demonstrating the feasibility of the system as an alternative to transfection for the manipulation of hard-to-transfect cells.


Assuntos
Peptídeos Penetradores de Células/metabolismo , Frações Subcelulares/metabolismo , Animais , Técnicas Biossensoriais , Linhagem Celular , Cricetinae
9.
Mol Biol Cell ; 27(10): 1606-20, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27009202

RESUMO

UNC-89 is a giant polypeptide located at the sarcomeric M-line of Caenorhabditis elegans muscle. The human homologue is obscurin. To understand how UNC-89 is localized and functions, we have been identifying its binding partners. Screening a yeast two-hybrid library revealed that UNC-89 interacts with paramyosin. Paramyosin is an invertebrate-specific coiled-coil dimer protein that is homologous to the rod portion of myosin heavy chains and resides in thick filament cores. Minimally, this interaction requires UNC-89's SH3 domain and residues 294-376 of paramyosin and has a KD of ∼1.1 µM. In unc-89 loss-of-function mutants that lack the SH3 domain, paramyosin is found in accumulations. When the SH3 domain is overexpressed, paramyosin is mislocalized. SH3 domains usually interact with a proline-rich consensus sequence, but the region of paramyosin that interacts with UNC-89's SH3 is α-helical and lacks prolines. Homology modeling of UNC-89's SH3 suggests structural features that might be responsible for this interaction. The SH3-binding region of paramyosin contains a "skip residue," which is likely to locally unwind the coiled-coil and perhaps contributes to the binding specificity.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Musculares/metabolismo , Tropomiosina/metabolismo , Citoesqueleto de Actina/metabolismo , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas Musculares/genética , Músculos/metabolismo , Peptídeos/metabolismo , Ligação Proteica , Sarcômeros/metabolismo , Relação Estrutura-Atividade , Tropomiosina/genética , Domínios de Homologia de src
10.
J Cell Sci ; 129(5): 893-7, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26801086

RESUMO

The use of cell-penetrating peptides (CPPs) as biomolecular delivery vehicles holds great promise for therapeutic and other applications, but development has been stymied by poor delivery and lack of endosomal escape. We have developed a CPP-adaptor system capable of efficient intracellular delivery and endosomal escape of user-defined protein cargos. The cell-penetrating sequence of HIV transactivator of transcription was fused to calmodulin, which binds with subnanomolar affinity to proteins containing a calmodulin binding site. Our strategy has tremendous advantage over prior CPP technologies because it utilizes high-affinity non-covalent, but reversible coupling between CPP and cargo. Three different cargo proteins fused to a calmodulin binding sequence were delivered to the cytoplasm of eukaryotic cells and released, demonstrating the feasibility of numerous applications in living cells including alteration of signaling pathways and gene expression.


Assuntos
Peptídeos Penetradores de Células/metabolismo , Endossomos/metabolismo , Mioglobina/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Calmodulina/química , Peptídeos Penetradores de Células/química , Produtos do Gene tat/química , Células HEK293 , Humanos , Transporte Proteico , Proteínas Recombinantes de Fusão/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...