Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Adv Biol (Weinh) ; 8(4): e2300325, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342585

RESUMO

Skin is an organ having a crucial role in the protection of muscle, bone, and internal organs and undergoing continuous self-renewal and aged. The growing interest in the prevention of skin aging and rejuvenation has sparked a surge of industrial and research studies focusing on the biological and transcriptional changes that occur during skin development and aging. In this study, the aim is to identify transcriptional differences between two main types of human skin cells: the human dermal fibroblasts (HDFs) and the human epidermis keratinocytes (HEKs) isolated from 30 neonatal and 30 adults (old) skin. Through differentially expressed gene (DEG) profiling using DEseq2, 604 up-, and 769 down-regulated genes are identified in the old group. A functional analysis using Metascape Gene Ontology and Reactome pathways revealed systematic transcriptomic shifts in key skin formation and maintenance markers, alongside a distinct difference in HOX gene families crucial for embryonic development and diverse biological processes. Among the 39 human HOX gene family, ten posterior HOX genes (HOXA10, 11, 13, HOXB13, HOXC11, and HOXD9-13) are significantly downregulated, and anterior 25 genes (HOXA2-7, HOXB1-9, HOXC4-6 and 8-9, and HOXD1,3,4 and 8) are upregulated, especially in the old HDFs. The study successfully demonstrates the correlation between HOX genes and the skin aging process, providing strong evidence that HOX genes are proposed as a new marker for skin aging assessment.


Assuntos
Genes Homeobox , Pele , Adulto , Recém-Nascido , Humanos , Idoso , Perfilação da Expressão Gênica , Queratinócitos , Transcriptoma/genética , Fatores de Transcrição/genética , Proteínas de Homeodomínio/genética
3.
Biomacromolecules ; 24(6): 2633-2642, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37075205

RESUMO

Recently, the desire for a safe and effective method for skin whitening has been growing in the cosmetics industry. Commonly used tyrosinase-inhibiting chemical reagents exhibit side effects. Thus, recent studies have focused on performing melanin decolorization with enzymes as an alternative due to the low toxicity of enzymes and their ability to decolorize melanin selectively. Herein, 10 different isozymes were expressed as recombinant lignin peroxidases (LiPs) from Phanerochaete chrysosporium (PcLiPs), and PcLiP isozyme 4 (PcLiP04) was selected due to its high stability and activity at pH 5.5 and 37 °C, which is close to human skin conditions. In vitro melanin decolorization results indicated that PcLiP04 exhibited at least 2.9-fold higher efficiency than that of well-known lignin peroxidase (PcLiP01) in a typical human skin-mimicking environment. The interaction force between melanin films measured by a surface forces apparatus (SFA) revealed that the decolorization of melanin by PcLiP04 harbors a disrupted structure, possibly interrupting π-π stacking and/or hydrogen bonds. In addition, a 3D reconstructed human pigmented epidermis skin model showed a decrease in melanin area to 59.8% using PcLiP04, which suggests that PcLiP04 exhibits a strong potential for skin whitening.


Assuntos
Melaninas , Phanerochaete , Humanos , Peroxidases , Pele , Epiderme , Lignina
4.
Comput Struct Biotechnol J ; 21: 2009-2017, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968014

RESUMO

Rhodotorula toruloides is a non-conventional yeast with a natural carotenoid pathway. In particular, R. toruloides is an oleaginous yeast that can accumulate lipids in high content, thereby gaining interest as a promising industrial host. In this study, we isolated and taxonomically identified a new R. toruloides LAB-07 strain. De novo genome assembly using PacBio and Illumina hybrid platforms yielded 27 contigs with a 20.78 Mb genome size. Subsequent genome annotation analysis based on RNA-seq predicted 5296 protein-coding genes, including the fatty acid production pathway. We compared lipid production under different media; it was highest in the yeast extract salt medium with glycerol as a carbon source. Polyunsaturated α-linolenic acid was detected among the fatty acids, and docking phosphatidylcholine as a substrate to modeled Fad2, which annotated as Δ12-fatty acid desaturase showed bifunctional Δ12, 15-desaturation is structurally possible in that the distances between the diiron center and the carbon-carbon bond in which desaturation occurs were similar to those of structurally identified mouse stearoyl-CoA desaturase. Finally, the applicability of the extracted total lipid fraction of R. toruloides was investigated, demonstrating an increase in filaggrin expression and suppression of heat-induced MMP-1 expression when applied to keratinocytes, along with the additional antioxidant activity. This work presents a new R. toruloides LAB-07 strain with genomic and lipidomic data, which would help understand the physiology of R. toruloides. Also, the various skin-related effect of R. toruloides lipid extract indicates its potential usage as a promising cosmetic ingredient.

5.
Int J Mol Sci ; 21(9)2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32403430

RESUMO

In this study, caviar (sturgeon eggs) was used to elucidate its roles in adiponectin production and skin anti-aging. Recently, caviar has been largely used not only as a nutritional food, but also in cosmetic products. In particular, it has been reported that docosahexaenoic acid (DHA), as one of the main phospholipid components of caviar extract, induces intracellular lipid accumulation and the expression of adiponectin in adipocytes. Although adipocytes are well known to be associated with the skin dermis by secreting various factors (e.g., adiponectin), the effects of caviar extract and DHA on the skin are not well studied. Here, we demonstrate the effects of caviar extract and DHA on adipocyte differentiation and adiponectin production, resulting in a preventive role in UV-irradiated skin aging. Caviar extract and DHA enhanced adipocyte differentiation and promoted the synthesis of transcription factors controlling adipocyte differentiation and adiponectin. In addition, the mRNA expression levels of matrix metalloproteinase-1 (MMP-1) were decreased in UVB-irradiated Hs68 fibroblasts that were cultured in conditioned medium from caviar extract or DHA-treated differentiated adipocytes. Taken together, these results indicate that caviar extract and DHA induce adipocyte differentiation and adiponectin production, thereby inhibiting UVB-induced premature skin aging via the suppression of MMP-1 production.


Assuntos
Adipócitos/efeitos dos fármacos , Adiponectina/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Ovos/análise , Fibroblastos/efeitos dos fármacos , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Produtos Pesqueiros , Prepúcio do Pênis/citologia , Prepúcio do Pênis/efeitos dos fármacos , Prepúcio do Pênis/efeitos da radiação , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/efeitos da radiação , Humanos , Masculino , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 1 da Matriz/metabolismo , Camundongos , Envelhecimento da Pele/efeitos dos fármacos , Envelhecimento da Pele/efeitos da radiação , Raios Ultravioleta
6.
Integr Cancer Ther ; 18: 1534735419851197, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31109222

RESUMO

AIM: To evaluate the anti-invasive effect of ethanol extracts of rhizome of Dryopteris crassirhizoma (EEDC) in matrix invasion and formation of functional invadopodia and to determine the anti-tumor effect of EEDC in a mouse model of mandibular invasion by gingival squamous cell carcinoma (SCC). METHODS: The rhizome of D crassirhizoma was extracted in ethanol. The anti-invasive effect of EEDC was analyzed with a Matrigel-coated transwell invasion and 3D culture system. Crucial factors related to the control of cancer cell invasion by EEDC were determined using a human protease array. Molecular evidence supporting the anti-invasive effect of EEDC in oral SCC (OSCC) cells used an invadopodia-mediated extracellular matrix (ECM) degradation; an in vivo athymic mouse model was also provided. RESULTS: EEDC treatment (10 µg/mL) suppressed transwell migration and invasion of HSC-3 OSCC cells without cytotoxicity. Decreased levels of matrix metalloprotease (MMP)-7, kalikrein 10, cathepsin V, MMP-2, and cathepsin D were also found in EEDC-treated HSC-3 cells based on human protease array. The anti-invasive effects of EEDC involved the suppression of invadopodia-mediated ECM degradation via inhibition of globular-actin elongation. The anti-invasive effect resulting from disturbance of functional invadopodia formation by EEDC was observed even at a low concentration of 5 µg/mL. The phosphorylation of cortactin involved in functional invadopodia formation was decreased at EEDC concentrations that inhibited invadopodia formation. The anti-tumor effect of EEDC was also observed in a mouse xenograft model. Administration of EEDC resulted in inhibition of tumor growth and progression. CONCLUSIONS: EEDC represents a potential anti-invasive and anti-tumor agent in cancer control.


Assuntos
Actinas/metabolismo , Antineoplásicos/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Dryopteris/química , Invasividade Neoplásica/prevenção & controle , Extratos Vegetais/farmacologia , Polimerização/efeitos dos fármacos , Animais , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fosforilação/efeitos dos fármacos
7.
Biosci Biotechnol Biochem ; 82(7): 1188-1196, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29621941

RESUMO

In this study, we investigated the inhibitory mechanisms of resorcinol in B16F10 mouse melanoma cells. We found that resorcinol reduced both the melanin content and tyrosinase activity in these cells. In addition, resorcinol suppressed the expression of melanogenic gene microphthalmia-associated transcriptional factor (MITF) and its downstream target genes tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2. In addition, we found that resorcinol reduced intracellular cAMP levels and protein kinase A (PKA) activity, and increased phosphorylation of the p38 mitogen-activated protein kinase (MAPK). Resorcinol was also found to directly inhibit tyrosinase activity. However, resorcinol-induced decrease in melanin content, tyrosinase activity, and tyrosinase protein levels were attenuated by SB203580, a p38 MAPK inhibitor. Taken together, these data indicate that anti-melanogenic activity of resorcinol is be mediated through the inhibition of cAMP signaling and activation of p38 MAPK, indicating that resorcinol may be a possible ameliorating agent in the treatment of hyperpigmentation skin disorders.


Assuntos
AMP Cíclico/metabolismo , Indóis/antagonistas & inibidores , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Resorcinóis/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Linhagem Celular Tumoral , Células Cultivadas , Interações Medicamentosas , Ativação Enzimática , Expressão Gênica/efeitos dos fármacos , Humanos , Imidazóis/farmacologia , Indóis/metabolismo , Oxirredutases Intramoleculares/genética , Melaninas/metabolismo , Melanócitos/efeitos dos fármacos , Melanócitos/metabolismo , Melanose/tratamento farmacológico , Melanose/genética , Glicoproteínas de Membrana/genética , Camundongos , Fator de Transcrição Associado à Microftalmia/genética , Monofenol Mono-Oxigenase/antagonistas & inibidores , Monofenol Mono-Oxigenase/metabolismo , Oxirredutases/genética , Fosforilação , Piridinas/farmacologia , Reação em Cadeia da Polimerase em Tempo Real , Resorcinóis/uso terapêutico
8.
Chem Biol Interact ; 273: 107-114, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28601556

RESUMO

Melanogenesis plays a critical role in the protection of skin against external stresses such as ultraviolet irradiation and oxidative stressors. This study was aimed to investigate the effects of cannabidiol on melanogenesis and its mechanisms of action in human epidermal melanocytes. We found that cannabidiol increased both melanin content and tyrosinase activity. The mRNA levels of microphthalmia-associated transcription factor (MITF), tyrosinase, tyrosinase-related protein (TRP) 1, and TRP2 were increased following cannabidiol treatment. Likewise, cannabidiol increased the protein levels of MITF, TRP 1, TRP 2, and tyrosinase. Mechanistically, we found that cannabidiol regulated melanogenesis by upregulating MITF through phosphorylation of p38 mitogen-activated protein kinase (MAPK) and p42/44 MAPK, independent of cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) signaling. In addition, the melanogenic effect of cannabidiol was found to be mediated by cannabinoid CB1 receptor, not by CB2 receptor. Taken together, these findings indicate that cannabidiol-induced melanogenesis is cannabinoid CB1 receptor-dependent, and cannabidiol induces melanogenesis through increasing MITF gene expression which is mediated by activation of p38 MAPK and p42/44 MAPK. Our results suggest that cannabidiol might be useful as a protective agent against external stresses.


Assuntos
Canabidiol/farmacologia , Melaninas/biossíntese , Melanócitos/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Humanos , Melanócitos/metabolismo , Relação Estrutura-Atividade , Regulação para Cima/efeitos dos fármacos
9.
BMC Complement Altern Med ; 17(1): 113, 2017 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-28202081

RESUMO

BACKGROUND: The fruit of the Terminalia chebula tree has been widely used for the treatment of various disorders. Its anti-diabetic, anti-mutagenic, anti-oxidant, anti-bacterial, anti-fungal, and anti-viral effects have been studied. Dental plaque bacteria (DPB) are intimately associated with gingivitis and periodontitis. In the quest for materials that will prove useful in the treatment and prevention of periodontal disease, we investigated the preventive effects of an ethanol extract of Terminalia chebula (EETC) on DPB-induced inflammation and bone resorption. METHODS: The anti-bacterial effect of EETC was analyzed using the disc diffusion method. The anti-inflammatory effect of EETC was determined by molecular biological analysis of the DPB-mediated culture cells. Prevention of osteoclastic bone resorption by EETC was explored using osteoclast formation and pit formation assays. RESULTS: EETC suppressed the growth of oral bacteria and reduced the induction of inflammatory cytokines and proteases, abolishing the expression of PGE2 and COX-2 and inhibiting matrix damage. By stimulating the DPB-derived lipopolysaccharides, EETC inhibited both osteoclast formation in osteoclast precursors and RANKL expression in osteoblasts, thereby contributing to the prevention of bone resorption. CONCLUSIONS: EETC may be a beneficial supplement to help prevent DPB-mediated periodontal disease.


Assuntos
Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Bactérias/efeitos dos fármacos , Placa Dentária/microbiologia , Doenças Periodontais , Extratos Vegetais/farmacologia , Terminalia , Animais , Antibacterianos/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Bactérias/crescimento & desenvolvimento , Reabsorção Óssea/microbiologia , Reabsorção Óssea/prevenção & controle , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Dinoprostona/metabolismo , Gengivite/microbiologia , Gengivite/prevenção & controle , Inflamação/microbiologia , Inflamação/prevenção & controle , Camundongos , Boca/microbiologia , Osteoblastos/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Peptídeo Hidrolases/metabolismo , Doenças Periodontais/microbiologia , Doenças Periodontais/patologia , Doenças Periodontais/prevenção & controle , Periodontite/microbiologia , Periodontite/prevenção & controle , Fitoterapia , Extratos Vegetais/uso terapêutico , Ligante RANK/metabolismo , Células RAW 264.7
10.
Int J Mol Sci ; 17(11)2016 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-27854351

RESUMO

Activation of peroxisome proliferator-activated receptors (PPAR) α/γ is known to inhibit the increases in matrix metalloproteinase (MMP) and reactive oxygen species (ROS) induced by ultraviolet light (UV). Extracts of natural herbs, such as Kochia scoparia and Rosa multiflora, have a PPAR α/γ dual agonistic effect. Therefore, we investigated whether and how they have an antiaging effect on photoaging skin. Eighteen-week-old hairless mice were irradiated with UVA 14 J/cm² and UVB 40 mJ/cm² three times a week for 8 weeks. A mixture of extracts of Kochia scoparia and Rosa multiflora (KR) was topically applied on the dorsal skin of photoaging mice twice a day for 8 weeks. Tesaglitazar, a known PPAR α/γ agonist, and vehicle (propylene glycol:ethanol = 7:3, v/v) were applied as positive and negative controls, respectively. Dermal effects (including dermal thickness, collagen density, dermal expression of procollagen 1 and collagenase 13) and epidermal effects (including skin barrier function, epidermal proliferation, epidermal differentiation, and epidermal cytokines) were measured and compared. In photoaging murine skin, KR resulted in a significant recovery of dermal thickness as well as dermal fibroblasts, although it did not change dermal collagen density. KR increased the expression of dermal transforming growth factor (TGF)-ß. The dermal effects of KR were explained by an increase in procollagen 1 expression, induced by TGF-ß, and a decrease in MMP-13 expression. KR did not affect basal transepidermal water loss (TEWL) or stratum corneum (SC) integrity, but did decrease SC hydration. It also did not affect epidermal proliferation or epidermal differentiation. KR decreased the expression of epidermal interleukin (IL)-1α. Collectively, KR showed possible utility as a therapeutic agent for photoaging skin, with few epidermal side effects such as epidermal hyperplasia or poor differentiation.


Assuntos
Bassia scoparia/química , PPAR alfa/agonistas , PPAR gama/agonistas , Extratos Vegetais/farmacologia , Rosa/química , Envelhecimento da Pele/efeitos dos fármacos , Envelhecimento da Pele/efeitos da radiação , Animais , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos da radiação , Metaloproteinase 1 da Matriz/análise , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 13 da Matriz/genética , Camundongos Pelados , PPAR alfa/genética , PPAR gama/genética , Extratos Vegetais/química , Pró-Colágeno/genética , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/efeitos da radiação , Pele/ultraestrutura , Fator de Crescimento Transformador beta/genética , Raios Ultravioleta/efeitos adversos
11.
Chem Biol Interact ; 254: 167-72, 2016 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-27287415

RESUMO

Melanogenesis refers to synthesis of the skin pigment melanin, which plays a critical role in the protection of skin against ultraviolet irradiation and oxidative stressors. We investigated the effects of afzelin on melanogenesis and its mechanisms of action in human epidermal melanocytes. In this study, we found that afzelin increased both melanin content and tyrosinase activity in a concentration-dependent manner. While the mRNA levels of microphthalmia-associated transcription factor (MITF), tyrosinase, and tyrosinase-related protein (TRP)-1 increased following afzelin treatment, the mRNA levels of TRP-2 were not affected by afzelin. Likewise, afzelin increased the protein levels of MITF, TRP-1, and tyrosinase but not TRP-2. Mechanistically, we found that afzelin regulated melanogenesis by upregulating MITF through phosphorylation of p38 mitogen-activated protein kinase (MAPK), independent of cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) signaling. Taken together, these findings indicate that the promotion of melanogenesis by afzelin occurs through increased MITF gene expression, which is mediated by activation of p38 MAPK, and suggest that afzelin may be useful as a protective agent against ultraviolet irradiation.


Assuntos
Manosídeos/farmacologia , Pigmentação/efeitos dos fármacos , Proantocianidinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Western Blotting , Células Cultivadas , Humanos , Imidazóis/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Melaninas/metabolismo , Melanócitos/citologia , Melanócitos/efeitos dos fármacos , Melanócitos/metabolismo , Fator de Transcrição Associado à Microftalmia/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Oxirredutases/metabolismo , Fosforilação/efeitos dos fármacos , Piridinas/farmacologia , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
12.
Chem Biol Interact ; 250: 78-84, 2016 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-26972667

RESUMO

Melanogenesis is a physiological process that results in the synthesis of melanin pigments, which play a crucial protective role against skin photocarcinogenesis. We investigated the effects of a Polygoni Multiflori Ramulus extract on melanogenesis and isolated emodin from Polygoni Multiflori as an active compound. In addition, the possible mechanisms of action were examined. We found that emodin inhibited both melanin content and tyrosinase activity concentration and time dependently. Tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2 mRNA levels decreased following emodin treatment. However, while the mRNA levels of microphthalmia-associated transcription factor (MITF) were not affected by emodin, emodin reduced MITF protein levels. Furthermore, expression of the liver X-receptor (LXR) α gene, but not the LXR ß gene was upregulated by emodin. Moreover, emodin regulated melanogenesis by promoting degradation of the MITF protein by upregulating the LXR α gene. The emodin effects on MITF was found to be mediated by phosphorylation of p42/44 MAPK. Taken together, these findings indicate that the inhibition of melanogenesis by emodin occurs through reduced MITF protein expression, which is mediated by upregulation of the LXR α gene and suggest that emodin may be useful as a hyperpigmentation inhibitor.


Assuntos
Emodina/isolamento & purificação , Emodina/farmacologia , Fallopia multiflora/química , Melaninas/metabolismo , Melanócitos/efeitos dos fármacos , Receptores Nucleares Órfãos/genética , Linhagem Celular , Regulação para Baixo/efeitos dos fármacos , Humanos , Receptores X do Fígado , Melaninas/antagonistas & inibidores , Melanócitos/metabolismo , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Receptores Nucleares Órfãos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...