Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6410, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828022

RESUMO

We introduce a new paradigm for generating high-purity vortex beams with metasurfaces. By applying optical neural networks to a system of cascaded phase-only metasurfaces, we demonstrate the efficient generation of high-quality Laguerre-Gaussian (LG) vortex modes. Our approach is based on two metasurfaces where one metasurface redistributes the intensity profile of light in accord with Rayleigh-Sommerfeld diffraction rules, and then the second metasurface matches the required phases for the vortex beams. Consequently, we generate high-purity LGp,l optical modes with record-high Laguerre polynomial orders p = 10 and l = 200, and with the purity in p, l and relative conversion efficiency as 96.71%, 85.47%, and 70.48%, respectively. Our engineered cascaded metasurfaces suppress greatly the backward reflection with a ratio exceeding -17 dB. Such higher-order optical vortices with multiple orthogonal states can revolutionize next-generation optical information processing.

2.
Environ Pollut ; 335: 122378, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37586683

RESUMO

The Hg released from coal mining activities can endanger soil ecosystems and pose a risk to human health. Understanding the accumulation characteristics of mercury (Hg) in coal mining soil is important for effectively controlling Hg emissions and developing measures for the prevention and control of Hg contamination. To identify the potential sources of Hg in soils, the Hg concentration and isotopic composition characteristics of raw coal and different topsoil types from the areas surrounding a coal mine were determined in this study. The results showed that Hg in coal mainly exists mainly in the form of inorganic Hg, and Hg has experienced Hg2+ photoreduction prior to incorporating into coal. In addition, the composition of Hg isotopes differed significantly among different topsoil types, and the δ202Hg value of the farmland soil exhibited large negative excursions compared to the coal mining soil. The ternary mixed model further revealed the presence of substantial differences in potential Hg sources among the two regions, with the coal mining soil being greatly disturbed by anthropogenic activity, and the relative contributions of Hg from raw coal, coal gangue, and background soil to coal mining soil being 33.42%, 34.4%, and 32.19%, respectively. However, Hg from raw coal, coal gangue and background soil contributed 17.04%, 21.46%, and 61.51% of the Hg in the farmland soil, indicating that the accumulation of Hg in farmland soil was derived primarily from the background soil. Our study demonstrated that secondary pollution in soil caused by immense accumulation of solid waste (gangue) by mining activities offers a significant challenge to ecological security. These findings provide new insights into controlling soil Hg in mining areas and further highlight the urgency of strict protective measures for contaminated sites.


Assuntos
Minas de Carvão , Mercúrio , Poluentes do Solo , Humanos , Ecossistema , Monitoramento Ambiental/métodos , Mercúrio/análise , Mineração , Solo , Isótopos , Carvão Mineral/análise , Poluentes do Solo/análise , China
3.
ACS Nano ; 17(13): 12820-12828, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37352512

RESUMO

Bottom-up self-assembly is regarded as an alternative way to manufacture series of microstructures in many fields, especially chiral microstructures, which attract tremendous attention because of their optical micromanipulations and chiroptical spectroscopies. However, most of the self-assembled microstructures cannot be tuned after processing, which largely hinders their broad applications. Here, we demonstrate a promising manufacturing strategy for switchable microstructures by combining the flexibility of femtosecond laser printing induced capillary force self-assembly and the temperature-responsive characteristics of smart hydrogels. Through designing asymmetric cross-link density, the printed microarchitectures can be deformed in the opposite direction and assembled into switchable ordered microstructures driven by capillary forces under different temperatures. Finally, the assembled chiral microstructures with switchable opposite handedness are realized, which shows tunable vortical dichroism. The proposed strategy holds potential applications in the fields of chiral photonics, chiral sensing, and so on.

4.
Water Res ; 240: 120119, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37247441

RESUMO

Removal of low-carbon fatty amines (LCFAs) in wastewater treatment poses a significant technical challenge due to their small molecular size, high polarity, high bond dissociation energy, electron deficiency, and poor biodegradability. Moreover, their low Brønsted acidity deteriorates this issue. To address this problem, we have developed a novel base-induced autocatalytic technique for the highly efficient removal of a model pollutant, dimethylamine (DMA), in a homogeneous peroxymonosulfate (PMS) system. A high reaction rate constant of 0.32 min-1 and almost complete removal of DMA within 12 min are achieved. Multi-scaled characterizations and theoretical calculations reveal that the in situ constructed C=N bond as the crucial active site activates PMS to produce abundant 1O2. Subsequently, 1O2 oxidizes DMA through multiple H-abstractions, accompanied by the generation of another C=N structure, thus achieving the autocatalytic cycle of pollutant. During this process, base-induced proton transfers of pollutant and oxidant are essential prerequisites for C=N fabrication. A relevant mechanism of autocatalytic degradation is unraveled and further supported by DFT calculations at the molecular level. Various assessments indicate that this self-catalytic technique exhibits a reduced toxicity and volatility process, and a low treatment cost (0.47 $/m3). This technology has strong environmental tolerance, especially for the high concentrations of chlorine ion (1775 ppm) and humic acid (50 ppm). Moreover, it not only exhibits excellent degradation performance for different amine organics but also for the coexisting common pollutants including ofloxacin, phenol, and sulforaphane. These results fully demonstrate the superiority of the proposed strategy for practical application in wastewater treatment. Overall, this autocatalysis technology based on the in-situ construction of metal-free active site by regulating proton transfer will provide a brand-new strategy for environmental remediation.


Assuntos
Carbono , Poluentes Ambientais , Carbono/química , Prótons , Aminas , Domínio Catalítico , Peróxidos/química
5.
Nano Lett ; 23(6): 2304-2311, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36880306

RESUMO

Vortex beams, which intrinsically possess optical orbital angular momentum (OAM), are considered as one of the promising chiral light waves for classical optical communications and quantum information processing. For a long time, it has been an expectation to utilize artificial three-dimensional (3D) chiral metamaterials to manipulate the transmission of vortex beams for practical optical display applications. Here, we demonstrate the concept of selective transmission management of vortex beams with opposite OAM modes assisted by the designed 3D chiral metahelices. Utilizing the integrated array of the metahelices, a series of optical operations, including display, hiding, and even encryption, can be realized by the parallel processing of multiple vortex beams. The results open up an intriguing route for metamaterial-dominated optical OAM processing, which fosters the development of photonic angular momentum engineering and high-security optical encryption.

6.
ACS Nano ; 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36629479

RESUMO

Three-dimensional chiral metallic metamaterials have already attracted extensive attention in the wide research fields of chiroptical responses. These artificial chiral micronanostructures, possessing strong chiroptical signals, show huge significance in next-generation photonic devices and chiroptical spectroscopy techniques. However, most of the existing chiral metallic metamaterials are designed for generating chiroptical signals dependent on photonic spin angular momentum (SAM). The chiral metallic metamaterials for generating strong chiroptical responses by photonic orbital angular momentum (OAM) remain unseen. In this work, we fabricate copper microhelices with opposite handedness by additively manufacturing and further examine their OAM-dominated chiroptical response: helical dichroism (HD). The chiral copper microhelices exhibit differential reflection to the opposite OAM states, resulting in a significant HD signal (∼50%). The origin of the HD can be theoretically explained by the difference in photocurrent distribution inside copper microhelices under opposite OAM states. Moreover, the additively manufactured copper microhelices possess an excellent microstructural stability under varying annealing temperatures for robust HD responses. Lower material cost and noble-metal-similar optical properties, accompanied with well thermal stability, render the copper microhelices promising metamaterials in advanced chiroptical spectroscopy and photonic OAM engineering.

7.
Nano Lett ; 22(22): 9013-9019, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36326581

RESUMO

The spin-orbit interaction of light is a fundamental manifestation of controlling its angular momenta with numerous applications in photonic spin Hall effects and chiral quantum optics. However, observation of an optical spin Hall effect, which is normally very weak with subwavelength displacements, needs quantum weak measurements or sophisticated metasurfaces. Here, we theoretically and experimentally demonstrate the spin-orbit interaction of light in the form of strong chiroptical responses by breaking the in-plane inversion symmetry of a dielectric substrate. The chiroptical signal is observed at the boundary of a microdisk illuminated by circularly polarized vortex beams at normal incidence. The generated chiroptical spectra are tunable for different photonic orbital angular momenta and microdisk diameters. Our findings, correlating photonic spin-orbit interaction with chiroptical responses, may provide a route for exploiting optical information processing, enantioselective sensing, and chiral metrology.

8.
Lab Chip ; 22(22): 4382-4392, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36278889

RESUMO

Separation of plasma which is full of various biomarkers is critical for clinical diagnosis. However, the point-of-care plasma separation often relies on microfluidic filtration membranes which are usually limited in purity, yield, hemolysis, extraction speed, hematocrit level, and protein recovery. Here, we have developed a high-performance plasma membrane separation technique based on a Janus membrane and red blood cell (RBC) agglutination reaction. The RBC agglutination reaction can form larger RBC aggregates to separate plasma from blood cells. Then, the Janus membrane, serving as a multipore microfilter to block large RBC aggregates, allows the plasma to flow from the hydrophobic side to its hydrophilic side spontaneously. As a result, the separation technique can extract highly-purified plasma (99.99%) from whole blood with an ultra-high plasma yield (∼80%) in ∼80 s. Additionally, the separation technique is independent of the hematocrit level and can avoid hemolysis.


Assuntos
Hemólise , Plasma , Humanos , Plasma/química , Microfluídica/métodos , Células Sanguíneas , Aglutinação
9.
Adv Sci (Weinh) ; 9(33): e2203482, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36253153

RESUMO

Despite the significance for wave physics and potential applications, high-efficiency frequency conversion of low-frequency waves cannot be achieved with conventional nonlinearity-based mechanisms with poor mode purity, conversion efficiency, and real-time reconfigurability of the generated harmonic waves in both optics and acoustics. Rotational Doppler effect provides an intuitive paradigm to shifting the frequency in a linear system which, however, needs a spiral-phase change upon the wave propagation. Here a rotating passive linear vortex metasurface is numerically and experimentally presented with close-to-unity mode purity (>93%) and high conversion efficiency (>65%) in audible sound frequency as low as 3000 Hz. The topological charge of the transmitted sound is almost immune from the rotational speed and transmissivity, demonstrating the mechanical robustness and stability in adjusting the high-performance frequency conversion in situ. These features enable the researchers to cascade multiple vortex metasurfaces to further enlarge and diversify the extent of sound frequency conversion, which are experimentally verified. This strategy takes a step further toward the freewheeling sound manipulation at acoustic frequency domain, and may have far-researching impacts in various acoustic communications, signal processing, and contactless detection.

10.
J Colloid Interface Sci ; 628(Pt A): 417-425, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35932678

RESUMO

Personal moisture and thermal management fabrics that can facilitate sweat removal and regulating skin temperature are highly desired for improving human comfort and performance. Here, we demonstrate a hydrophobic/superhydrophilic Janus cotton-fabric through femtosecond-laser-induced hydrophilization. The engineering Janus cotton-fabric can unidirectionally transport human sweat spontaneously. More importantly, the Janus fabrics can maintain human body temperature 2-3 °C lower than the conventional cotton fabrics, implying the cooling effect in thermal environment. In addition, the Janus fabric has lower wet skin adhesion in comparison with a conventional hydrophilic cotton fabric. The water vapor transmission rate (WVTR) of a Janus fabric is comparable to the traditional hydrophilic cotton fabrics. Overall, the successful creation of the Janus fabrics provides new insights for the development of moisture-wicking/thermal-management fabrics for satisfying the growing demand of personal comfort.


Assuntos
Vapor , Suor , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lasers , Têxteis
11.
Sci Adv ; 8(30): eabn9774, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35905184

RESUMO

Advanced control over the excitation of ultraconfined polaritons-hybrid light and matter waves-empowers unique opportunities for many nanophotonic functionalities, e.g., on-chip circuits, quantum information processing, and controlling thermal radiation. Recent work has shown that highly asymmetric polaritons are directly governed by asymmetries in crystal structures. Here, we experimentally demonstrate extremely asymmetric and unidirectional phonon polariton (PhP) excitation via directly patterning high-symmetry orthorhombic van der Waals (vdW) crystal α-MoO3. This phenomenon results from symmetry breaking of momentum matching in polaritonic diffraction in vdW materials. We show that the propagation of PhPs can be versatile and robustly tailored via structural engineering, while PhPs in low-symmetry (e.g., monoclinic and triclinic) crystals are largely restricted by their naturally occurring permittivities. Our work synergizes grating diffraction phenomena with the extreme anisotropy of high-symmetry vdW materials, enabling unexpected control of infrared polaritons along different pathways and opening opportunities for applications ranging from on-chip photonics to directional heat dissipation.

12.
Science ; 374(6566): eabj0039, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34672745

RESUMO

Rapid progress in miniaturizing vortex devices is driven by their integration with optical sensing, micromanipulation, and optical communications in both classical and quantum realms. Many such efforts are usually associated with on-chip micro- or nanoscale structures in real space and possess a static orbital angular momentum. Recently, a new branch of singular optics has emerged that seeks phase singularities in multiple dimensions, realizing vortex beams with compact nanodevices. Here, we review the topological phase singularities in real space, momentum space, and the spatiotemporal domain for generating vortex beams; discuss recent developments in theoretical and experimental research for generation, detection, and transmission of vortex beams; and provide an outlook for future opportunities in this area, ranging from fundamental research to practical applications.

13.
Opt Lett ; 46(6): 1401-1404, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33720197

RESUMO

Three-dimensional helical microstructures are abundant in nature and can be applied as chiral metamaterials for advanced nanophotonics. Here we report a flexible method to fabricate double-helical microstructures with single exposure by recording the chirality of incident optical vortices. Two coaxial optical vortices can interfere to generate a helical optical field, confirmed by the numerical simulation. The diameters of double-helical microstructures can be tailored by the magnitude of topological charges. This fast manufacturing strategy provides the opportunity to efficiently yield helical microstructures. Finally, the chirality of double-helical microstructures can be reversibly read by optical vortices, demonstrating a strong chiroptical response.

14.
ACS Nano ; 15(2): 2893-2900, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33497201

RESUMO

Optical activity, demonstrating the chiral light-matter interaction, has attracted tremendous attention in both fundamental theoretical research and advanced applications of high-efficiency enantioselective sensing and next-generation chiroptical spectroscopic techniques. However, conventional chiroptical responses are normally limited in large assemblies of chiral materials by circularly polarized light, exhibiting extremely weak chiroptical signals in a single chiral nanostructure. Here, we demonstrate that an alternative chiral freedom of light-orbital angular momentum-can be utilized for generating strong helical dichroism in single chiral nanostructures. The helical dichroism by monochromatic vortex beams can unambiguously distinguish the intrinsic chirality of nanostructures, in an excellent agreement with theoretical predictions. The single planar-chiral nanostructure can exhibit giant helical dichroism of ∼20% at the visible wavelength. The vortex-dependent helical dichroism, expanding to single nanostructures and two-dimensional space, has implications for high-efficiency chiroptical detection of planar-chiral nanostructures in chiral optics and nanophotonic systems.

15.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33372145

RESUMO

Spin angular momentum of light is vital to investigate enantiomers characterized by circular dichroism (CD), widely adopted in biology, chemistry, and material science. However, to discriminate chiral materials with multiscale features, CD spectroscopy normally requires wavelength-swept laser sources as well as wavelength-specific optical accessories. Here, we experimentally demonstrate an orbital-angular-momentum-assisted approach to yield chiroptical signals with monochromatic light. The gigantic vortical differential scattering (VDS) of ∼120% is achieved on intrinsically chiral microstructures fabricated by femtosecond laser. The VDS measurements can robustly generate chiroptical properties on microstructures with varying geometric features (e.g., diameters and helical pitches) and detect chiral molecules with high sensitivity. This VDS scheme lays a paradigm-shift pavement toward efficiently chiroptical discrimination of multiscale chiral structures with photonic orbital angular momentum. It simplifies and complements the conventional CD spectroscopy, opening possibilities for measuring weak optical chirality, especially on mesoscale chiral architectures and macromolecules.

16.
Light Sci Appl ; 9: 139, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32922765

RESUMO

Chirality arises universally across many different fields. Recent advancements in artificial nanomaterials have demonstrated chiroptical responses that far exceed those found in natural materials. Chiroptical phenomena are complicated processes that involve transitions between states with opposite parities, and solid interpretations of these observations are yet to be clearly provided. In this review, we present a comprehensive overview of the theoretical aspects of chirality in light, nanostructures, and nanosystems and their chiroptical interactions. Descriptions of observed chiroptical phenomena based on these fundamentals are intensively discussed. We start with the strong intrinsic and extrinsic chirality in plasmonic nanoparticle systems, followed by enantioselective sensing and optical manipulation, and then conclude with orbital angular momentum-dependent responses. This review will be helpful for understanding the mechanisms behind chiroptical phenomena based on underlying chiral properties and useful for interpreting chiroptical systems for further studies.

17.
Light Sci Appl ; 9: 103, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32577219

RESUMO

The orbital angular momentum (OAM) of light has promising applications, ranging from information multiplexing andhigh-speed optical communication to computation. Dynamically tunable and switchable vortex microlasers combinedwith direct photocurrent detection of the topological charges of OAM states have paved unexplored routes for thedevelopment and integration of fourth-generation (4.0) vortex technology, potentially on chip.

18.
Adv Mater ; 32(31): e2002356, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32567083

RESUMO

Artificial microstructures composed of chiral building blocks are of great significance in the fields of optics and mechanics. Here, it is shown that highly ordered chiral structures can be spontaneously assembled by a meniscus-directed capillary force arising in an evaporating liquid. The chirality is facilitated by rationally breaking the intrinsic symmetry in the unit cells through cooperative control of the geometry and spatial topology of the micropillars. The interfacial dynamics of the assembly process are studied to show that the sequential self-organization of the micropillars is influenced by the geometries, stiffness, and spatial arrangements. A diversity of chiral assemblies with controlled handedness is yielded by varying the pillar number, height, cross-section, laser power, and spatial topology. Lastly, the differential reflectance of light carrying opposite orbital angular momentums on the assembled chiral architectures are investigated, showcasing their potential in the field of chiral photonics concerning enantioselective response and exceptional optical functions.

19.
Adv Mater ; 32(6): e1905659, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31867803

RESUMO

Vector vortex beams (VVBs) possess ubiquitous applications from particle trapping to quantum information. Recently, the bulky optical devices for generating VVBs have been miniaturized by using metasurfaces. Nevertheless, it is quite challenging for the metasurface-generated VVBs to possess arbitrary polarization and phase distributions. More critical is that the VVBs' annular intensity profiles demonstrated hitherto are dependent on topological charges and are hence not perfect, posing difficulties in spatially shared co-propagation of multiple vortex beams. Here, a single-layer metasurface to address all those aforementioned challenges in one go is proposed, which consists of two identical crystal-silicon nanoblocks with varying positions and rotation angles (i.e., four geometric parameters throughout). Those four geometric parameters are found to be adequate for independent and arbitrary control of the amplitude, phase, and polarization of light. Perfect VVBs with arbitrary polarization and phase distributions are successfully generated, and the constant intensity profiles independent of their topological charges and polarization orders are demonstrated. The proposed strategy casts a distinct perception that a minimalist design of just one single-layer metasurface can empower such robust and versatile control of VVBs. That provides promising opportunities for generating more complex vortex field for advanced applications in structural light, optical micromanipulation, and data communication.

20.
Nanoscale ; 11(11): 4803-4810, 2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30815658

RESUMO

Artificial bioinspired surfaces are attracting increasing attention because of their fascinating characteristics, such as the structural color of a butterfly wing and the anisotropic wetting of a rice leaf. However, realization of the multicolor biomimetic metal surfaces with controlled anisotropy by using a simple, inexpensive and efficient method remains a challenge. Herein, we propose a focused laser interference lithography processing method, which has sufficient energy density and high processing efficiency to directly fabricate the groove structures on the metal surface. The surface is multicolor due to the diffraction grating effect of the regular groove structures, and exhibits anisotropic wetting due to its single-direction morphology. The influence of the observation angle on the diversity of colors and the anisotropic wetting under different heights and periods of grooves have been quantitatively investigated. A variety of patterns (e.g., leaf, crab, windmill, letter and so on) can be processed on various metals (e.g., stainless steel, Ti, Ni, Cu, Fe, Zn and so on) by this focused laser interference lithography because of its excellent flexibility and wide range of suitable materials. This multi-functional metal surface has broad applications in identification code, decorative beautification, anti-counterfeiting, information storage, bionic application design and so on.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...