Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Philos Trans R Soc Lond B Biol Sci ; 372(1730)2017 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-28808096

RESUMO

Crop productivity needs to substantially increase to meet global food and feed demand for a rapidly growing world population. Agricultural technology developers are pursuing a variety of approaches based on both traditional technologies such as genetic improvement, pest control and mechanization as well as new technologies such as genomics, gene manipulation and environmental modelling to develop crops that are capable of meeting growing demand. Photosynthesis is a key biochemical process that, many suggest, is not yet optimized for industrial agriculture or the modern global environment. We are interested in identifying control points in maize photoassimilation that are amenable to gene manipulation to improve overall productivity. Our approach encompasses: developing and using novel gene discovery techniques, translating our discoveries into traits and evaluating each trait in a stepwise manner that reflects a modern production environment. Our aim is to provide step change advancement in overall crop productivity and deliver this new technology into the hands of growers.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'.


Assuntos
Produção Agrícola/métodos , Fotossíntese , Zea mays/genética , Zea mays/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Zea mays/crescimento & desenvolvimento
2.
Database (Oxford) ; 2009: bap005, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20157478

RESUMO

Gramene is a comparative information resource for plants that integrates data across diverse data domains. In this article, we describe the development of a quantitative trait loci (QTL) database and illustrate how it can be used to facilitate both the forward and reverse genetics research. The QTL database contains the largest online collection of rice QTL data in the world. Using flanking markers as anchors, QTLs originally reported on individual genetic maps have been systematically aligned to the rice sequence where they can be searched as standard genomic features. Researchers can determine whether a QTL co-localizes with other QTLs detected in independent experiments and can combine data from multiple studies to improve the resolution of a QTL position. Candidate genes falling within a QTL interval can be identified and their relationship to particular phenotypes can be inferred based on functional annotations provided by ontology terms. Mutations identified in functional genomics populations and association mapping panels can be aligned with QTL regions to facilitate fine mapping and validation of gene-phenotype associations. By assembling and integrating diverse types of data and information across species and levels of biological complexity, the QTL database enhances the potential to understand and utilize QTL information in biological research.

3.
Nucleic Acids Res ; 36(Database issue): D947-53, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17984077

RESUMO

Gramene (www.gramene.org) is a curated resource for genetic, genomic and comparative genomics data for the major crop species, including rice, maize, wheat and many other plant (mainly grass) species. Gramene is an open-source project. All data and software are freely downloadable through the ftp site (ftp.gramene.org/pub/gramene) and available for use without restriction. Gramene's core data types include genome assembly and annotations, other DNA/mRNA sequences, genetic and physical maps/markers, genes, quantitative trait loci (QTLs), proteins, ontologies, literature and comparative mappings. Since our last NAR publication 2 years ago, we have updated these data types to include new datasets and new connections among them. Completely new features include rice pathways for functional annotation of rice genes; genetic diversity data from rice, maize and wheat to show genetic variations among different germplasms; large-scale genome comparisons among Oryza sativa and its wild relatives for evolutionary studies; and the creation of orthologous gene sets and phylogenetic trees among rice, Arabidopsis thaliana, maize, poplar and several animal species (for reference purpose). We have significantly improved the web interface in order to provide a more user-friendly browsing experience, including a dropdown navigation menu system, unified web page for markers, genes, QTLs and proteins, and enhanced quick search functions.


Assuntos
Produtos Agrícolas/genética , Bases de Dados Genéticas , Genoma de Planta , Arabidopsis/genética , Mapeamento Cromossômico , Produtos Agrícolas/metabolismo , Marcadores Genéticos , Variação Genética , Genômica , Internet , Oryza/genética , Poaceae/genética , Triticum/genética , Interface Usuário-Computador , Zea mays/genética
4.
Nucleic Acids Res ; 34(Database issue): D717-23, 2006 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-16381966

RESUMO

Rice, maize, sorghum, wheat, barley and the other major crop grasses from the family Poaceae (Gramineae) are mankind's most important source of calories and contribute tens of billions of dollars annually to the world economy (FAO 1999, http://www.fao.org; USDA 1997, http://www.usda.gov). Continued improvement of Poaceae crops is necessary in order to continue to feed an ever-growing world population. However, of the major crop grasses, only rice (Oryza sativa), with a compact genome of approximately 400 Mbp, has been sequenced and annotated. The Gramene database (http://www.gramene.org) takes advantage of the known genetic colinearity (synteny) between rice and the major crop plant genomes to provide maize, sorghum, millet, wheat, oat and barley researchers with the benefits of an annotated genome years before their own species are sequenced. Gramene is a one stop portal for finding curated literature, genetic and genomic datasets related to maps, markers, genes, genomes and quantitative trait loci. The addition of several new tools to Gramene has greatly facilitated the potential for comparative analysis among the grasses and contributes to our understanding of the anatomy, development, environmental responses and the factors influencing agronomic performance of cereal crops. Since the last publication on Gramene database by D. H. Ware, P. Jaiswal, J. Ni, I. V. Yap, X. Pan, K. Y. Clark, L. Teytelman, S. C. Schmidt, W. Zhao, K. Chang et al. [(2002), Plant Physiol., 130, 1606-1613], the database has undergone extensive changes that are described in this publication.


Assuntos
Mapeamento Cromossômico , Bases de Dados Genéticas , Grão Comestível/genética , Genoma de Planta , Arabidopsis/genética , Genes de Plantas , Marcadores Genéticos , Genômica , Internet , Oryza/genética , Proteínas de Plantas/genética , Locos de Características Quantitativas , Interface Usuário-Computador , Vocabulário Controlado , Zea mays/genética
5.
Plant Physiol ; 130(4): 1606-13, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12481044

RESUMO

Gramene (http://www.gramene.org) is a comparative genome mapping database for grasses and a community resource for rice (Oryza sativa). It combines a semi-automatically generated database of cereal genomic and expressed sequence tag sequences, genetic maps, map relations, and publications, with a curated database of rice mutants (genes and alleles), molecular markers, and proteins. Gramene curators read and extract detailed information from published sources, summarize that information in a structured format, and establish links to related objects both inside and outside the database, providing seamless connections between independent sources of information. Genetic, physical, and sequence-based maps of rice serve as the fundamental organizing units and provide a common denominator for moving across species and genera within the grass family. Comparative maps of rice, maize (Zea mays), sorghum (Sorghum bicolor), barley (Hordeum vulgare), wheat (Triticum aestivum), and oat (Avena sativa) are anchored by a set of curated correspondences. In addition to sequence-based mappings found in comparative maps and rice genome displays, Gramene makes extensive use of controlled vocabularies to describe specific biological attributes in ways that permit users to query those domains and make comparisons across taxonomic groups. Proteins are annotated for functional significance using gene ontology terms that have been adopted by numerous model species databases. Genetic variants including phenotypes are annotated using plant ontology terms common to all plants and trait ontology terms that are specific to rice. In this paper, we present a brief overview of the search tools available to the plant research community in Gramene.


Assuntos
Genoma de Planta , Genômica/métodos , Poaceae/genética , Avena/genética , Biologia Computacional/métodos , Bases de Dados Genéticas , Etiquetas de Sequências Expressas , Hordeum/genética , Internet , Oryza/genética , Fenótipo , Mapeamento Físico do Cromossomo/métodos , Proteínas de Plantas/genética , Poaceae/classificação , Triticum/genética
6.
Nucleic Acids Res ; 30(1): 103-5, 2002 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-11752266

RESUMO

Gramene (http://www.gramene.org) is a comparative genome mapping database for grasses and a community resource for rice. Rice, in addition to being an economically important crop, is also a model monocot for understanding other agronomically important grass genomes. Gramene replaces the existing AceDB database 'RiceGenes' with a relational database based on Oracle. Gramene provides curated and integrative information about maps, sequence, genes, genetic markers, mutants, QTLs, controlled vocabularies and publications. Its aims are to use the rice genetic, physical and sequence maps as fundamental organizing units, to provide a common denominator for moving from one crop grass to another and is to serve as a portal for interconnecting with other web-based crop grass resources. This paper describes the initial steps we have taken towards realizing these goals.


Assuntos
Bases de Dados Genéticas , Genoma de Planta , Oryza/genética , Poaceae/genética , Mapeamento Cromossômico , Gráficos por Computador , Sistemas de Gerenciamento de Base de Dados , Previsões , Genes de Plantas , Marcadores Genéticos , Armazenamento e Recuperação da Informação , Internet , Mutação , Característica Quantitativa Herdável , Homologia de Sequência
7.
Comp Funct Genomics ; 3(2): 132-6, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-18628886

RESUMO

Gramene (http://www.gramene.org/) is a comparative genome database for cereal crops and a community resource for rice. We are populating and curating Gramene with annotated rice (Oryza sativa) genomic sequence data and associated biological information including molecular markers, mutants, phenotypes, polymorphisms and Quantitative Trait Loci (QTL). In order to support queries across various data sets as well as across external databases, Gramene will employ three related controlled vocabularies. The specific goal of Gramene is, first to provide a Trait Ontology (TO) that can be used across the cereal crops to facilitate phenotypic comparisons both within and between the genera. Second, a vocabulary for plant anatomy terms, the Plant Ontology (PO) will facilitate the curation of morphological and anatomical feature information with respect to expression, localization of genes and gene products and the affected plant parts in a phenotype. The TO and PO are both in the early stages of development in collaboration with the International Rice Research Institute, TAIR and MaizeDB as part of the Plant Ontology Consortium. Finally, as part of another consortium comprising macromolecular databases from other model organisms, the Gene Ontology Consortium, we are annotating the confirmed and predicted protein entries from rice using both electronic and manual curation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...