Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Comb Optim ; 45(5): 116, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37304047

RESUMO

Consortium blockchains offer privacy for members while allowing supervision peers access to on-chain data under certain circumstances. However, current key escrow schemes rely on vulnerable traditional asymmetric encryption/decryption algorithms. To address this issue, we have designed and implemented an enhanced post-quantum key escrow system for consortium blockchains. Our system integrates NIST post-quantum public-key encryption/KEM algorithms and various post-quantum cryptographic tools to provide a fine-grained, single-point-of-dishonest-resistant, collusion-proof and privacy-preserving solution. We also offer chaincodes, related APIs, and invoking command lines for development. Finally, we perform detailed security analysis and performance evaluation, including the consumed time of chaincode execution and the needed on-chain storage space, and we also highlight the security and performance of related post-quantum KEM algorithms on consortium blockchain.

2.
IEEE/ACM Trans Comput Biol Bioinform ; 20(6): 3489-3498, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37314917

RESUMO

With the growing popularity of artificial intelligence in drug discovery, many deep-learning technologies have been used to automatically predict unknown drug-target interactions (DTIs). A unique challenge in using these technologies to predict DTI is fully exploiting the knowledge diversity across different interaction types, such as drug-drug, drug-target, drug-enzyme, drug-path, and drug-structure types. Unfortunately, existing methods tend to learn the specifical knowledge on each interaction type and they usually ignore the knowledge diversity across different interaction types. Therefore, we propose a multitype perception method (MPM) for DTI prediction by exploiting knowledge diversity across different link types. The method consists of two main components: a type perceptor and a multitype predictor. The type perceptor learns distinguished edge representations by retaining the specifical features across different interaction types; this maximizes the prediction performance for each interaction type. The multitype predictor calculates the type similarity between the type perceptor and predicted interactions, and the domain gate module is reconstructed to assign an adaptive weight to each type perceptor. Extensive experiments demonstrate that our proposed MPM outperforms the state-of-the-art methods in DTI prediction.


Assuntos
Inteligência Artificial , Desenvolvimento de Medicamentos , Descoberta de Drogas/métodos , Percepção , Interações Medicamentosas
3.
Theor Comput Sci ; 840: 257-269, 2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-32939100

RESUMO

Social networks provide us a convenient platform to communicate and share information or ideas with each other, but it also causes many negative effects at the same time, such as, the spread of misinformation or rumor in social networks may cause public panic and even serious economic or political crisis. In this paper, we propose a Community-based Rumor Blocking Problem (CRBMP), i.e., selecting a set of seed users from all communities as protectors with the constraint of budget b such that the expected number of users eventually not being influenced by rumor sources is maximized. We consider the community structure in social networks and solve our problem in two stages, in the first stage, we allocate budget b for all the communities, this sub-problem whose objective function is proved to be monotone and DR-submodular, so we can use the method of submodular function maximization on an integer lattice, which is different from most of the existing work with the submodular function over a set function. Then a greedy community budget allocation algorithm is devised to get an 1 - 1 / e approximation ratio; we also propose a speed-up greedy algorithm which greatly reduces the time complexity for the community budget allocation and can get an 1 - 1 / e - ϵ approximation guarantee meanwhile. Next we solve the Protector Seed Selection (PSS) problem in the second stage after we obtained the budget allocation vector for communities, we greedily choose protectors for each community with the budget constraints to achieve the maximization of the influence of protectors. The greedy algorithm for PSS problem can achieve a 1/2 approximation guarantee. We also consider a special case where the rumor just originates from one community and does not spread out of its own community before the protectors are selected, the proposed algorithm can reduce the computational cost than the general greedy algorithm since we remove the uninfected communities. Finally, we conduct extensive experiments on three real world data sets, the results demonstrate the effectiveness of the proposed algorithm and its superiority over other methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...