RESUMO
INTRODUCTION: Programmed death-ligand 1 (PD-L1) is reportedly expressed in colorectal tumors. However, the prognostic role of PD-L1 in colorectal cancer (CRC) remains controversial. Therefore, we performed a meta-analysis to investigate the clinicopathological and prognostic impact of PD-L1 in CRC. METHODS: A comprehensive search in PubMed, Embase, the Cochrane Library, Web of Science and the ClinicalTrials.gov for publications about PD-L1 expression in colorectal cancer was done. The correlation between PD-L1 expression and clinicopathological features or survival outcomes was analyzed by odds ratios (OR) or hazard ratios (HR), at 95% confidence intervals (CI). RESULTS: The results show that the pooled HR of (1.34, 95% CI 1.02-1.65, p = 0.01) indicated the association of PD-L1 expression with overall survival (OS) in CRC patients. Meanwhile, the expression of PD-L1 was positively correlated with the lymph node metastasis (OR: 0.70, 95% CI 0.51-0.95, p = 0.00), gender (OR: 0.86, 95% CI 0.76-0.98, p = 0.05) and tumor location (OR: 1.39, 95% CI 1.14-1.71, p = 0.12). CONCLUSIONS: These results suggest that high expression of PD-L1 is associated with low OS in CRC. High PD-L1 expression may act as a negative factor for patients with CRC and help to identify patients suitable for anticancer therapy.
Assuntos
Antígeno B7-H1/metabolismo , Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Humanos , Prognóstico , Taxa de SobrevidaRESUMO
Ginsenoside Rg1, one of the most notable active components of Panax ginseng, has been widely reported to exert anti-inflammatory actions. This study aimed to reveal whether ginsenoside Rg1 also exhibits beneficial roles against lipopolysaccharide (LPS)-induced apoptosis and inflammation in human renal tubular epithelial cells, and to evaluate the potential role of the component on tubulointerstitial nephritis treatment. HK-2 cells were treated with various doses of ginsenoside Rg1 (0, 50, 100, 150, and 200 μM) in the absence or presence of 5 μg/mL LPS. Thereafter, CCK-8 assay, flow cytometry, western blot, migration assay, reactive oxygen species (ROS) assay, and ELISA were carried out to respectively assess cell viability, apoptosis, migration, ROS activity, and the release of inflammatory cytokines. As a result, ginsenoside Rg1 protected HK-2 cells from LPS-induced injury, as cell viability was increased, cell apoptosis was decreased, and the release of MCP-1, IL-1β, IL-6, and TNF-α was reduced. Ginsenoside Rg1 functioned to HK-2 cells in a dose-dependent manner, and the 150 μM dose exhibited the most protective functions. Ginsenoside Rg1 had no significant impact on cell migration and ROS activity, while it alleviated LPS-induced ROS release and migration impairment. Furthermore, the down-regulations of p-PI3K, p-AKT, and up-regulations of PTEN, p-IκBα, p-p65, Bcl-3 induced by LPS were recovered to some extent after ginsenoside Rg1 treatment. In conclusion, ginsenoside Rg1 protects HK-2 cells against LPS-induced inflammation and apoptosis via activation of the PI3K/AKT pathway and suppression of NF-κB pathway.
Assuntos
Humanos , Lipopolissacarídeos , Apoptose/efeitos dos fármacos , Ginsenosídeos/farmacologia , Células Epiteliais/efeitos dos fármacos , Túbulos Renais/citologia , Anti-Inflamatórios/farmacologia , Ensaio de Imunoadsorção Enzimática , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Western Blotting , Reprodutibilidade dos Testes , Análise de Variância , Citocinas/análise , Citocinas/efeitos dos fármacos , Ensaios de Migração CelularRESUMO
Ginsenoside Rg1, one of the most notable active components of Panax ginseng, has been widely reported to exert anti-inflammatory actions. This study aimed to reveal whether ginsenoside Rg1 also exhibits beneficial roles against lipopolysaccharide (LPS)-induced apoptosis and inflammation in human renal tubular epithelial cells, and to evaluate the potential role of the component on tubulointerstitial nephritis treatment. HK-2 cells were treated with various doses of ginsenoside Rg1 (0, 50, 100, 150, and 200 µM) in the absence or presence of 5 µg/mL LPS. Thereafter, CCK-8 assay, flow cytometry, western blot, migration assay, reactive oxygen species (ROS) assay, and ELISA were carried out to respectively assess cell viability, apoptosis, migration, ROS activity, and the release of inflammatory cytokines. As a result, ginsenoside Rg1 protected HK-2 cells from LPS-induced injury, as cell viability was increased, cell apoptosis was decreased, and the release of MCP-1, IL-1ß, IL-6, and TNF-α was reduced. Ginsenoside Rg1 functioned to HK-2 cells in a dose-dependent manner, and the 150 µM dose exhibited the most protective functions. Ginsenoside Rg1 had no significant impact on cell migration and ROS activity, while it alleviated LPS-induced ROS release and migration impairment. Furthermore, the down-regulations of p-PI3K, p-AKT, and up-regulations of PTEN, p-IκBα, p-p65, Bcl-3 induced by LPS were recovered to some extent after ginsenoside Rg1 treatment. In conclusion, ginsenoside Rg1 protects HK-2 cells against LPS-induced inflammation and apoptosis via activation of the PI3K/AKT pathway and suppression of NF-κB pathway.