Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1364857, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38690361

RESUMO

Background: Hyperuricemia (HUA) is a prevalent metabolic disorder whose development is associated with intestinal microbiota. Therefore, probiotics have emerged as a potential and safe approach for lowering uric acid (UA) levels. However, the underlying mechanisms of many effective probiotic strains remain unknown. Methods and results: C57BL/6 mice were randomly divided into two groups: control and model groups. The model group received 12 weeks of potassium oxonate. Through 16s sequencing we found that HUA resulted in a significant decrease in the total diversity of all intestinal segments. When each intestinal segment was analyzed individually, the reduction in diversity was only significant in the cecum and colon sections. RDA analysis showed that lactobacilli in the rat colon exhibited a strong correlation with model group, suggesting that Lactobacillus may play an important role in HUA. Consequently, the preventive effects of Lactobacillus johnsonii YH1136 against HUA were investigated. C57BL/6 mice were randomly divided into three groups: control, model and YH1136 groups. The results showed that administering Lactobacillus johnsonii YH1136 effectively reduced serum UA levels in vivo by inhibiting hepatic xanthine oxidase (XOD) activity and promoting renal ABCG2 transporter expression. Moreover, supplementation with Lactobacillus johnsonii YH1136 significantly ameliorated pathological damage in the kidney and liver, thereby reducing UA accumulation. Conclusion: Hyperuricemia is accompanied by an altered composition of multiple gut bacteria, of which Lactobacillus is a key genus. Lactobacillus johnsonii YH1136 may ameliorate renal involvement in HUA via the gut-kidney axis.

2.
Microorganisms ; 12(3)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38543490

RESUMO

Bacillus subtilis, a probiotic bacterium with engineering potential, is widely used for the expression of exogenous proteins. In this study, we utilized the integrative plasmid pDG364 to integrate the hemagglutinin-neuraminidase (HN) gene from Newcastle disease virus (NDV) into the genome of the B. subtilis 168 model strain. We successfully constructed a recombinant B. subtilis strain (designated B. subtilis RH) that displays a truncated HN antigen fragment on the surface of its spores and further evaluated its immunogenic effects in mice. Using ELISA, we quantified the levels of IgG in serum and secretory IgA (sIgA) in intestinal contents. The results revealed that the recombinant B. subtilis RH elicited robust specific mucosal and humoral immune responses in mice. Furthermore, B. subtilis RH demonstrated potential mucosal immune adjuvant properties by fostering the development of immune organs and augmenting the number of lymphocytes in the small intestinal villi. Additionally, the strain significantly upregulated the relative expression of inflammatory cytokines such as IL-1ß, IL-6, IL-10, TNF-α, and IFN-γ in the small intestinal mucosa. In conclusion, the B. subtilis RH strain developed in this study exhibits promising mucosal immunogenic effects. It holds potential as a candidate for an anti-NDV mucosal subunit vaccine and offers a novel preventive strategy for the poultry industry against this disease.

3.
FASEB J ; 38(5): e23530, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38466314

RESUMO

Brevibacillus laterosporus is a strain of probiotic bacteria that has been widely used in pest control, cash crop, and other production areas. However, few studies have been conducted on its use as a feed additive in animals. Therefore, the probiotic potential of B. laterosporus PBC01 was evaluated by characterizing hydrophobicity, auto-aggregation activity, bile salt and simulated gastrointestinal fluid tolerance, bienzymatic, and antibacterial activity. Antibiotic susceptibility, hemolysis assays, and supplemental feeding of mice were also performed to evaluate safety features. Our results showed that B. laterosporus PBC01 had moderate hydrophobicity, high auto-agglutination ability. Meanwhile, B. laterosporus PBC01 had good tolerance to bile salt and simulated gastrointestinal fluid. It had the ability to secrete protease, cellulase, and to inhibit various pathogens. In addition, B. laterosporus PBC01 was sensitive to many antibiotics, and did not produce hemolysin. In the safety assessment of mice, it did not cause any deaths, nor did it affect the cell components of blood, antioxidant capacity, and reproductive health. The study indicated the great probiotic characteristics and safety of B. laterosporus PBC01. This may provide a theoretical basis for the clinical application and development of probiotic-based feed additives.


Assuntos
Bacillus , Brevibacillus , Animais , Camundongos , Antibacterianos/farmacologia , Ácidos e Sais Biliares
4.
Artigo em Inglês | MEDLINE | ID: mdl-38300451

RESUMO

Cellulolytic bacteria with probiotic functions play a crucial role in promoting the intestinal health in herbivores. In this study, we aimed to correlate the 16S rRNA gene amplicon sequencing and fiber-degrading enzyme activity data from six different herbivore feces samples. By utilizing the separation and screening steps of probiotics, we targeted and screened high-efficiency fiber-degrading bacteria with probiotic functions. The animals included Maiwa Yak (MY), Holstein cow (CC), Tibetan sheep (TS), Southern Sichuan black goat (SG), Sichuan white rex rabbit (CR), and New Zealand white rabbit (ZR). The results showed that the enzymes associated with fiber degradation were higher in goat and sheep feces compared to cattle and rabbit's feces. Correlation analysis revealed that Bacillus and Fibrobacter were positively correlated with five types of fiber-degrading related enzymes. Notably, the relative abundance of Bacillus in the feces of Tibetan sheep was significantly higher than that of other five herbivores. A strain TS5 with good cellulose decomposition ability from the feces of Tibetan sheep by Congored staining, filter paper decomposition test, and enzyme activity determination was isolated. The strain was identified as Bacillus velezensis by biological characteristics, biochemical analysis, and 16S rRNA gene sequencing. To test the probiotic properties of Bacillus velezensis TS5, we evaluated its tolerance to acid and bile salt, production of digestive enzymes, antioxidants, antibacterial activity, and adhesion ability. The results showed that the strain had good tolerance to pH 2.0 and 0.3% bile salts, as well as good potential to produce cellulase, protease, amylase, and lipase. This strain also had good antioxidant capacity and the ability to antagonistic Staphylococcus aureus BJ216, Salmonella SC06, Enterotoxigenic Escherichia coli CVCC196, and Escherichia coli ATCC25922. More importantly, the strain had good self-aggregation and Caco-2 cell adhesion rate. In addition, we tested the safety of Bacillus velezensis TS5 by hemolysis test, antimicrobial susceptibility test, and acute toxicity test in mice. The results showed that the strain had no hemolytic phenotype, did not develop resistance to 19 commonly used antibiotics, had no cytotoxicity to Caco-2, and did not have acute toxic harm to mice. In summary, this study targeted isolated and screened a strain of Bacillus velezensis TS5 with high fiber-degrading ability and probiotic potency. This strain can be used as a potential probiotic for feeding microbial preparations for ruminants.

5.
Front Microbiol ; 14: 1322910, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38125573

RESUMO

Introduction: In recent years, a large number of studies have shown that Bacillus velezensis has the potential as an animal feed additive, and its potential probiotic properties have been gradually explored. Methods: In this study, Illumina NovaSeq PE150 and Oxford Nanopore ONT sequencing platforms were used to sequence the genome of Bacillus velezensis TS5, a fiber-degrading strain isolated from Tibetan sheep. To further investigate the potential of B. velezensis TS5 as a probiotic strain, in vivo experiments were conducted using 40 five-week-old male specific pathogen-free C57BL/6J mice. The mice were randomly divided into four groups: high fiber diet control group (H group), high fiber diet probiotics group (HT group), low fiber diet control group (L group), and low fiber diet probiotics group (LT group). The H and HT groups were fed high-fiber diet (30%), while the L and LT groups were fed low-fiber diet (5%). The total bacteria amount in the vegetative forms of B. velezensis TS5 per mouse in the HT and LT groups was 1 × 109 CFU per day, mice in the H and L groups were given the same volume of sterile physiological saline daily by gavage, and the experiment period lasted for 8 weeks. Results: The complete genome sequencing results of B. velezensis TS5 showed that it contained 3,929,788 nucleotides with a GC content of 46.50%. The strain encoded 3,873 genes that partially related to stress resistance, adhesion, and antioxidants, as well as the production of secondary metabolites, digestive enzymes, and other beneficial nutrients. The genes of this bacterium were mainly involved in carbohydrate metabolism, amino acid metabolism, vitamin and cofactor metabolism, biological process, and molecular function, as revealed by KEGG and GO databases. The results of mouse tests showed that B. velezensis TS5 could improve intestinal digestive enzyme activity, liver antioxidant capacity, small intestine morphology, and cecum microbiota structure in mice. Conclusion: These findings confirmed the probiotic effects of B. velezensis TS5 isolated from Tibetan sheep feces and provided the theoretical basis for the clinical application and development of new feed additives.

6.
Res Vet Sci ; 164: 105019, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37729784

RESUMO

The aim of this study is to explore the effects of fluoride on the innate immunity, intestinal mechanical barrier, and immune barrier of C57BL/6 mice, as well as to analyze the degree of structural and tissue damage, providing reference data for related research. Mice were randomly divided into four groups and then treated with 0 mg/L (control), 50 mg/L, 100 mg/L, 125 mg/L sodium fluoride solution, respectively, for 120 days. Histological technique, ELISA, MTT colorimetry methods were used to detect and analyze the effects of different concentrations of fluoride on the intestinal morphology, mechanical barrier and the immune functions and innate immunity of mice. The results showed that compared with the control group, the villi were injured in different degrees of the three fluoride groups, the number of goblet cells, the protein expression levels of connexin ZO-1, Claudin-1 and Occludin, the content of Diamine Oxidase (DAO), endotoxin (ET) and D-lactic acid (D-LA), the activity of natural killer cell (NK cells), the number and percentage of neutrophils and erythrocytes, the phagocytic rate of neutrophils, and the rate of C3bR rosette (which is formed by the adhesion of C3b receptors on the red blood cell membrane to complement sensitized yeast) and IC rosette (which is formed by the adhesion of C3b molecules in the immunecomplex adhered to the red blood cell membrane to non sensitized yeast) of red blood cells, the content of interlenkin 1 beta (IL-1ß) and interlenkin 8 (IL-8), the number and percentage of lymphocytes decreased with the increasing of fluoride concentration. In addition, the content of the Immunoglobulin A (sIgA) showed a trend of increase at first and then decrease in salivary gland and jejunum. It is concluded that excessive intake of fluoride for a long time has a certain damage effect on the intestinal tract, leading to an increase in the permeability of the intestinal tract, thereby destroying the mechanical and immune barrier function of the intestinal tract.


Assuntos
Fluoretos , Saccharomyces cerevisiae , Animais , Camundongos , Fluoretos/farmacologia , Imunidade Inata , Mucosa Intestinal/patologia , Intestinos/patologia , Camundongos Endogâmicos C57BL
7.
BMC Microbiol ; 23(1): 249, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37674107

RESUMO

Captive pandas are suffering from intestinal infection due to intestinal microbiota characterized by a high abundance of Enterobacteriaceae induced by long-term captivity. Probiotic supplements showed improvement in intestinal barrier function and inflammation. However, the effects of panda-derived probiotics on the intestinal epithelium and inflammation have not been elucidated. In the present study, lipopolysaccharide (LPS) impaired Caco-2 and RAW264.7 inflammatory models were applied to assess the protection of Lactiplantibacillus plantarum BSG201683 (L. plantarum G83) on barrier disruption and inflammation. The results showed that treatment with L. plantarum G83 significantly decreased the paracellular permeability to fluorescein isothiocyanate conjugated dextran (MW 4000, FITC-D4) after LPS induction. Meanwhile, L. plantarum G83 alleviated the reduction in tight junction (TJ) proteins and downregulated proinflammatory cytokines caused by LPS in Caco-2 cells. L. plantarum G83 also significantly decreased the expression and secretion of pro-inflammatory cytokines in LPS-induced RAW264.7 cells. In addition, the IL-10 increased in both Caco-2 and RAW264.7 cells after L. plantarum G83 treatment. The phagocytosis activity of RAW264.7 cells was significantly increased after L. plantarum G83 treatment. Toll-like receptor 4/ nuclear factor kappa-B (TLR4/NF-κB) signaling pathways were significantly down-regulated after L. plantarum G83 intervention, and the phosphorylation of NF-κB/p65 was consistent with this result. Our findings suggest that L. plantarum G83 improves intestinal inflammation and epithelial barrier disruption in vitro.


Assuntos
Lipopolissacarídeos , NF-kappa B , Humanos , Células CACO-2 , Citocinas , Inflamação/induzido quimicamente
8.
Ecotoxicol Environ Saf ; 259: 115049, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37235900

RESUMO

Nickel, as a widely polluted metal, has been shown nephrotoxicity. Ferroptosis is a new type of cell death driven by iron-dependent lipid peroxidation. Our study found that nickel chloride (NiCl2) induced ferroptosis in mouse kidney and TCMK-1 cells. The iron content was significantly increased in the kidney and TCMK-1 cells after NiCl2 treatment. Lipid peroxidation and MDA content were significantly increased, and GSH content and T-SOD activity were significantly decreased after exposure to NiCl2. Moreover, NiCl2 increased COX-2 protein levels, decreased SLC7A11 and GPX4 protein levels, and elevated Ptgs2 mRNA levels. Next, the mechanism of Ni-induced ferroptosis was investigated. The results showed that NiCl2 induced autophagy in TCMK-1 cells, which promoted ferroptosis induced by NiCl2. Furthermore, the data of autophagy activation or inhibition experiment showed that autophagy facilitated ferroptosis through the degradation of the iron regulation protein NCOA4 and FTH1. Otherwise, iron chelator DFOM treatment inhibited ferroptosis induced by NiCl2. Finally, ferroptosis inhibitor Fer-1 treatment significantly alleviated cytotoxicity induced by NiCl2. To sum up, our above results showed that ferroptosis is involved in NiCl2-induced nephrotoxicity, and NiCl2 induces autophagy-dependent ferritin degradation, releases iron ions, leads to iron overload, and induces ferroptosis. This study supplies a new theoretical foundation for the study of nickel and renal toxicity.


Assuntos
Ferroptose , Animais , Camundongos , Níquel/toxicidade , Níquel/metabolismo , Ferro/metabolismo , Ferritinas , Autofagia/genética
9.
J Hazard Mater ; 456: 131595, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37224709

RESUMO

Millions of residents in areas with high-fluoride drinking water supply ingest excessive levels of fluoride for long periods. This study investigated the mechanisms and impacts of lifelong exposure to naturally occurring moderate-high-fluoride drinking water on spatial-memory function by studying mice in controlled experiments. Spatial-memory deficits and disorders of hippocampal neuronal electrical activity were observed in mice exposed to 25-ppm or 50-ppm-fluoride drinking water for 56 weeks, but not in adult or old mice exposed to 50 ppm fluoride for 12 weeks. Ultrastructural analysis showed severely damaged hippocampal mitochondria, evidenced by reduced mitochondrial membrane potential and ATP content. Mitochondrial biogenesis was impaired in fluoride-exposed mice, manifesting as a significantly reduced mtDNA content, mtDNA-encoded subunits mtND6 and mtCO1, and respiratory complex activities. Fluoride reduced expression of Hsp22, a beneficial mediator of mitochondrial homeostasis, and decreased levels of signaling for the PGC-1α/TFAM pathway-which regulates mitochondrial biogenesis-and the NF-κß/STAT3 pathway-which regulates mitochondrial respiratory chain enzyme activity. Hippocampus-specific Hsp22-overexpression improved fluoride-induced spatial-memory deficits by activating the PGC-1α/TFAM and STAT3 signaling pathways, while Hsp22-silencing aggravated the deficits by inhibiting both pathways. Downregulation of Hsp22 plays a vital role in fluoride-induced spatial-memory deficits by impacting mtDNA-encoding subsets and mitochondrial respiratory chain enzyme activity.


Assuntos
Água Potável , Proteínas de Choque Térmico Pequenas , Camundongos , Animais , Fluoretos/toxicidade , Proteínas de Choque Térmico Pequenas/metabolismo , DNA Mitocondrial/genética , Hipocampo/metabolismo
10.
Ecotoxicol Environ Saf ; 259: 115035, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37224779

RESUMO

Approximately 400 million people work and live in high-altitude areas and suffer from memory dysfunction worldwide. Until now, the role of the intestinal flora in plateau-induced brain damage has rarely been reported. To address this, we investigated the effect of intestinal flora on spatial memory impairment induced by high altitudes based on the microbiome-gut-brain axis theory. C57BL/6 mice were divided into three groups: control, high-altitude (HA), and high-altitude antibiotic treatment (HAA) group. The HA and HAA groups were exposed to a low-pressure oxygen chamber that simulated an altitude of 4000 m above sea level (m. a. s.l.) for 14 days, with the air pressure in the chamber set at 60-65 kPa. The results showed that spatial memory dysfunction induced by the high-altitude environment was aggravated by antibiotic treatment, manifesting as lowered escape latency and hippocampal memory-related proteins (BDNF and PSD-95). 16 S rRNA sequencing showed a remarkable separation of the ileal microbiota among the three groups. Antibiotic treatment exacerbated the reduced richness and diversity of the ileal microbiota in mice in the HA group. Lactobacillaceae were the main target bacteria and were significantly reduced in the HA group, which was exacerbated by antibiotic treatment. Meanwhile, reduced intestinal permeability and ileal immune function in mice exposed high-altitude environment was also aggravated by antibiotic treatment, as indicated by the lowered tight junction proteins and IL-1ß and IFN-γ levels. Furthermore, indicator species analysis and Netshift co-analysis revealed that Lactobacillaceae (ASV11) and Corynebacteriaceae (ASV78, ASV25, and ASV47) play important roles in high-altitude exposure-induced memory dysfunction. Interestingly, ASV78 was negatively correlated with IL-1ß and IFN-γ levels, indicating that ASV78 may be induced by reduced ileal immune function, which mediates high-altitude environment exposure-induced memory dysfunction. This study provides evidence that the intestinal flora is effective in preventing brain dysfunction caused by exposure to high-altitude environments, suggesting a relationship between the microbiome-gut-brain axis and altitude exposure.


Assuntos
Microbioma Gastrointestinal , Animais , Camundongos , Eixo Encéfalo-Intestino , Altitude , Memória Espacial , Camundongos Endogâmicos C57BL , Antibacterianos/farmacologia
11.
Ecotoxicol Environ Saf ; 257: 114940, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37099960

RESUMO

Fluoride is a common contaminant of groundwater and agricultural commodity, which poses challenges to animal and human health. A wealth of research has demonstrated its detrimental effects on intestinal mucosal integrity; however, the underlying mechanisms remain obscure. This study aimed to investigate the role of the cytoskeleton in fluoride-induced barrier dysfunction. After sodium fluoride (NaF) treatment of the cultured Caco-2 cells, both cytotoxicity and cytomorphological changes (internal vacuoles or massive ablation) were observed. NaF lowered transepithelial electrical resistance (TEER) and enhanced paracellular permeation of fluorescein isothiocyanate dextran 4 (FD-4), indicating Caco-2 monolayers hyperpermeability. In the meantime, NaF treatment altered both the expression and distribution of the tight junction protein ZO-1. Fluoride exposure increased myosin light chain II (MLC2) phosphorylation and triggered actin filament (F-actin) remodeling. While inhibition of myosin II by Blebbistatin blocked NaF-induced barrier failure and ZO-1 discontinuity, the corresponding agonist Ionomycin had effects comparable to those of fluoride, suggesting that MLC2 serves as an effector. Given the mechanisms upstream of p-MLC2 regulation, further studies demonstrated that NaF activated RhoA/ROCK signaling pathway and myosin light chain kinase (MLCK), strikingly increasing the expression of both. Pharmacological inhibitors (Rhosin, Y-27632 and ML-7) reversed NaF-induced barrier breakdown and stress fiber formation. The role of intracellular calcium ions ([Ca2+]i) in NaF effects on Rho/ROCK pathway and MLCK was investigated. We found that NaF elevated [Ca2+]i, whereas chelator BAPTA-AM attenuated increased RhoA and MLCK expression as well as ZO-1 rupture, thus, restoring barrier function. Collectively, abovementioned results suggest that NaF induces barrier impairment via Ca2+-dependent RhoA/ROCK pathway and MLCK, which in turn triggers MLC2 phosphorylation and rearrangement of ZO-1 and F-actin. These results provide potential therapeutic targets for fluoride-induced intestinal injury.


Assuntos
Fluoretos , Quinase de Cadeia Leve de Miosina , Animais , Humanos , Fosforilação , Células CACO-2 , Quinase de Cadeia Leve de Miosina/metabolismo , Quinase de Cadeia Leve de Miosina/farmacologia , Fluoretos/metabolismo , Cálcio/metabolismo , Actinas/metabolismo , Junções Íntimas/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
12.
Environ Toxicol ; 38(5): 1185-1195, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36794572

RESUMO

Nickel (Ni) is an important and widely hazardous chemical industrial waste. Excessive Ni exposure could cause multi-organs toxicity in human and animals. Liver is the major target organ of Ni accumulation and toxicity, however, the precise mechanism is still unclear. In this study, nickel chloride (NiCl2 )-treatment induced hepatic histopathological changes in the mice, and, transmission electron microscopy results showed mitochondrial swollen and deformed of hepatocyte. Next, the mitochondrial damages including mitochondrial biogenesis, mitochondrial dynamics, and mitophagy were measured after NiCl2 administration. The results showed that NiCl2 suppressed mitochondrial biogenesis by decreasing PGC-1α, TFAM, and NRF1 protein and mRNA expression levels. Meanwhile, the proteins involved in mitochondrial fusion were reduced by NiCl2 , such as Mfn1 and Mfn2, however, mitochondrial fission proteins Drip1 and Fis1 were significantly increased. The up-regulation of mitochondrial p62 and LC3II expression indicated that NiCl2 increased mitophagy in the liver. Moreover, the receptor-mediated mitophagy and ubiquitin (Ub)-dependent mitophagy were detected. NiCl2 promoted PINK1 accumulation and Parkin recruitment on mitochondria. And, the receptor proteins of mitophagy Bnip3 and FUNDC1 were increased in the NiCl2 -treated mice liver. Overall, these results show that NiCl2 could induce mitochondria damage in the liver of mice, and, dysfunction of mitochondrial biogenesis, mitochondrial dynamics and mitophagy involved in the molecular mechanism of NiCl2 -induced hepatotoxicity.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Mitofagia , Humanos , Camundongos , Animais , Mitofagia/genética , Dinâmica Mitocondrial/genética , Biogênese de Organelas , Níquel/toxicidade , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
13.
Probiotics Antimicrob Proteins ; 15(3): 694-705, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35015242

RESUMO

To evaluate the application effect of antimicrobial peptides Gal-13 (AMP Gal-13) instead of antibiotic feed additives, 90 7-day-old Ross 308 broilers were randomly divided into 3 groups. Group A was fed a basic diet as the control, and Groups B and C were supplemented with AMP Gal-13 (100 mg/kg and 200 mg/kg, respectively). After a 35-day feeding experiment, the weight and average daily gain (ADG) of the broilers in Group B were significantly higher than those of the broilers in Group A. The Enterococcus sp. and Escherichia coli counts in the ileum and cecum in Group A were significantly higher than those in Groups B and C, while the Lactic acid bacteria (LAB) and Bifidobacterium sp. counts were significantly lower. The amylase activity of the jejunum in Group B was significantly higher than that in Group A. The villus length (VL): crypt depth (CD) ratios of the jejunum and ileum in Group B were significantly higher than those in Group A. The glutathione peroxidase (GSH-Px) activities in the liver and serum in Groups B and C were significantly higher than those in Group A, while the malondialdehyde (MDA) activity was significantly lower. The titers of Newcastle disease virus (NDV)-specific antibodies were elevated significantly in Group B at the age of 42 days. Additionally, the weights of the spleen and thymus were significantly increased. The expression levels of Il-2, Il-6, Tgf-ß4, Tnf-α, and Mif in the spleen in Groups B and C were significantly downregulated to different degrees; Il-4 expression in Group B was significantly upregulated, while Ifn-γ expression in Group C was significantly upregulated. The results suggested that adding AMP Gal-13 to the diet could improve intestinal digestion, the antioxidant capacity, and immune function, ultimately promoting the growth of broilers.


Assuntos
Antioxidantes , Microbioma Gastrointestinal , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Galinhas , Peptídeos Antimicrobianos , Intestinos/microbiologia , Suplementos Nutricionais/análise , Dieta , Ração Animal/análise
14.
Probiotics Antimicrob Proteins ; 15(3): 535-547, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-34697775

RESUMO

In this experiment, laying hens were divided into a high productive group (group H) and a low productive group (group L). The purpose of this experiment was to screen and isolate a potential probiotic associated with the laying rate from group H by comparing the results via 16S rDNA high-throughput sequencing. The high-throughput sequencing analysis results showed that there were some differences in the composition of the gut microbiome between groups H and L on the Phylum and Genus levels. Through isolation and identification, we screened 16 lactobacilli strains. Among the 16 strains, S5 showed good acid tolerance, bile salt tolerance, and cholesterol degradation. Therefore, we chose strain S5 (identified as Limosilactobacillus oris, named Limosilactobacillus oris BSLO 1801) as a potential probiotic to promote the productivity of ordinary laying hens. During the animal experiment, 288 Hy-line white hens (30 weeks old) were divided into four groups, with six replications (n = 12) per group. The control group received the basic diet, and the treatment groups received the same basic diet supplemented with 107 CFU/kg, 108 CFU/kg, and 109 CFU/kg of BSLO 1801. The laying hens were acclimated to the environment for 1 week before the initiation of the experiment. Dietary supplementation with 107 CFU/kg and 109 CFU/kg of BSLO 1801 increased the laying rate significantly, and the potential probiotic improved the egg weight in all treatment groups. Additionally, the cholesterol content of the yolk dropped significantly in the 109 CFU/kg group, and the weight of egg yolk was significantly increased in all treatment groups. However, no significant differences in eggshell strength, eggshell thickness, protein height, and Haugh unit were observed among the four groups. These results revealed that lactobacilli spp. are important bacteria of the intestinal microbiome in highly productive laying hens, and BSLO 1801 was isolated as a potential probiotic. Through these animal experiments, we also found that adding BSLO 1801 to the basic diet of laying hens could effectively improve the laying rate, average egg weight, and yolk weight and reduce the cholesterol content in egg yolk.


Assuntos
Galinhas , Probióticos , Animais , Feminino , Ração Animal/análise , Suplementos Nutricionais , Dieta/veterinária , Fezes , Colesterol
15.
Probiotics Antimicrob Proteins ; 15(3): 558-572, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-34735679

RESUMO

The aim of this study is to explore whether or not the combined application of BS15 and H2 is capable to have a more effective control effect on SNE in broilers. A total of 240 1-day-old female chickens were randomly divided into 5 groups: (a) basal diet in negative control group (NC group); (b) basal diet + SNE infection (coccidiosis vaccine + CP) (PC group); (c) basal diet + SNE infection + H2 pre-treatment (BT group); (d) basal diet + SNE infection + BS15 pre-treatment (LT group); and (e) basal diet + SNE infection + H2 pre-treatment + BS15 pre-treatment (MT group). The results showed the MT group had the most positive effect on inhibiting the negative effect of growth performance at 42 days of age. In the detection of the NC, PC, and MT group indicators at 28 days of age, we found that MT group significantly promoted ileum tissue development of broilers, and the ileum of broilers in the MT group formed a flora structure different from NC and PC, although it was found that the MT group had no effect on the butyrate level in the cecum, but it could affect the serum immune level, such as significantly reducing the level of pro-inflammatory cytokine IL-8 and increasing the content of immunoglobulin IgM and IgG. In conclusion, the composite preparation of Lactobacillus johnsonii BS15 and Bacillus licheniformis H2 could effectively improve the growth performance against SNE broilers, which is possibly caused by the improvement of the immune levels, the reduction of inflammation levels, and the promotion of the intestinal development.


Assuntos
Enterite , Doenças das Aves Domésticas , Probióticos , Feminino , Animais , Galinhas , Probióticos/farmacologia , Dieta/veterinária , Inflamação , Enterite/veterinária , Enterite/prevenção & controle , Ração Animal/análise , Doenças das Aves Domésticas/prevenção & controle
16.
Probiotics Antimicrob Proteins ; 15(4): 925-940, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-35150396

RESUMO

The present study was focused on evaluating the effects of Bacillus methylotrophicus SY200 in broiler production. A total of 120 healthy 7-day-old broiler chicks were randomly assigned to four dietary treatments, which included basal diet supplemented with 0%, 0.10%, 0.25%, or 0.50% (w/w) B. methylotrophicus SY200 preparation (1.0 × 109 cfu/g), regarded as negative control group (NC), low-dose group (BML), medium-dose group (BMM), and high-dose group (BMH), respectively. Each treatment was fed the corresponding experimental diet for 35 days. Results showed that dietary supplementation of B. methylotrophicus SY200 could improve broiler weight gain, especially the finisher phase. Further studies suggested that a certain amount of B. methylotrophicus SY200 enhanced the broiler antioxidant status and improved the morphological development of jejunum. Besides, dietary supplementation of B. methylotrophicus SY200 especially in 0.50% levels significantly increased the relative weight of immune organs and Newcastle disease virus antibody titer, similarly, increased mRNA expression levels of claudin-1, claudin-3, zonula occluden-1, and zonula occluden-2 were observed in the jejunum of BMM group. Moreover, B. methylotrophicus SY200 also showed beneficial effects in improving broilers microbiota homeostasis by increasing the number of beneficial bacteria. Conclusively, B. methylotrophicus SY200 could effectively improve the antioxidant status, modulate the intestinal structure, enhance the intestinal mucosal barrier function, and regulate the immune function of broilers, which finally improves the performance of the chicken in the finisher period.


Assuntos
Antioxidantes , Galinhas , Animais , Antioxidantes/farmacologia , Suplementos Nutricionais , Dieta/veterinária , Imunidade , Ração Animal/análise
17.
Probiotics Antimicrob Proteins ; 15(3): 668-681, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35000110

RESUMO

The multi-functional properties of lactic acid bacteria (LAB) on host health have been a popular research topic. The aim of present study was to assess the multi-functional potential of five LAB strains isolated from giant panda. In this study, we analyzed five giant panda LAB strains (Weissella confuse WJ202003 (W3), WJ202009 (W9), WJ202021 (W21), BSP201703 (X3); Lactiplantibacillus plantarum BSGP201683 (G83)) and found that they exhibited rapid growth as well as strong acid production capacity. The five LAB strains possessed high cell surface hydrophobicity to the four tested solvents (xylene, hexadecane, chloroform, ethyl acetate; except strain W9), auto-aggregation ability, co-aggregation ability with three pathogens (Escherichia coli, Enterotoxigenic Escherichia coli, Salmonella), adhesion ability to Caco-2 cell line, and strongly biofilm formation ability, suggesting an adhesion property. As investigated for their antioxidative potential, all the strains showed good tolerance to H2O2, high scavenging ability against 1, 1-diphenyl-2-picrylhydrazyl (DPPH), and hydroxyl (OH-), and reduction ability. Furthermore, the five LAB strains could produce multiple probiotic substances, including exopolysaccharide (EPS), gamma-aminobutyric acid (GABA), bile salt hydrolase (BSH), cellulase (only strain G83), and protease (except strain X3), which was the first to report the production of EPS, GABA, BSH, cellulase, and protease in giant panda-derived LAB strain. These results demonstrated that strains W3, W9, W21, X3, and G83 had multi-functional potential and could be utilized as potential probiotics for giant panda.


Assuntos
Celulases , Lactobacillales , Probióticos , Ursidae , Animais , Humanos , Ursidae/microbiologia , Peróxido de Hidrogênio , Células CACO-2 , Escherichia coli , Peptídeo Hidrolases
18.
Cell Mol Bioeng ; 15(6): 599-609, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36531863

RESUMO

Introduction: Cdc42 has been linked to multiple human cancers and is implicated in the migration of cancer cells. Cdc42 could be activated via biochemical and biophysical factors in tumor microenvironment, the precise control of Cdc42 was essential to determine its role to cell behaviors. Needle-shaped protrusions (filopodia) could sense the extracellular biochemical cues and pave the path for cell movement, which was a key structure involved in the regulation of cancer cell motility. Methods: We used the photoactivatable Cdc42 to elucidate the breast cancer cell protrusions, the mutation of Cdc42 was to confirm the optogenetic results. We also inhibit the Cdc42, Rac or Rho respectively by the corresponding inhibitors. Results: We identified that the activation of Cdc42 by light could greatly enhance the formation of filopodia, which was positive for the contribution of cell movement. The expression of Cdc42 active form Cdc42-Q61L in cells resulted in the longer and more filopodia while the Cdc42 inactive form Cdc42-T17N were with the shorter and less filopodia. Moreover, the inhibition of Cdc42, Rac or Rho all significantly reduced the filopodia numbers and length in the co-expression of Cdc42-Q61L, which showed that the integration of small GTPases was necessary in the formation of filopodia. Furthermore, photoactivation of Cdc42 failed to enhance the filopodia formation with the inhibition of Rac or Rho. However, with the inhibition of Cdc42, the photoactivation of Cdc42 could partially recover back the filopodia formations, which indicated that the integration of small GTPases was key for the filopodia formations. Conclusions: Our work highlights that light activates Cdc42 is sufficient to promote filopodia formation without the destructive structures of small GTPases, it not only points out the novel technique to determine cell structure formations but also provides the experimental basis for the efficient small GTPases-based anti-cancer strategies.

19.
Microbiol Spectr ; : e0199122, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36472469

RESUMO

Giant pandas are uniquely vulnerable mammals in western China. It is important to develop an animal model to explore the intestinal flora of giant pandas to understand the relationship between digestive diseases and flora. Existing animal models of intestinal flora focus on human flora-associated animals, such as mice, and there is a very limited amount of knowledge regarding giant panda flora-associated animals. To fill this gap, fecal microorganisms from giant pandas were transplanted into pseudosterile and germfree mice using single and multiple gavages. Fecal samples were collected from mice at four time points after transplantation for microbial community analysis. We determined that compared to pseudosterile mice, the characteristics of intestinal flora in pandas were better reproduced in germfree mice. There was no significant difference in microbial diversity between germfree mice and giant panda gut microbes from day 3 to day 21. Germfree mice at the phylum level possessed large amounts of Firmicutes and Proteobacteria, and at the genus level, Escherichia-Shigella, Clostridium sensu stricto 1, and Streptococcus dominated the intestinal flora structure. The microbial community co-occurrence network based on indicator species indicated that germfree mice transplanted with fecal bacteria tended to form a microbial community co-occurrence network similar to that of giant pandas, while pseudosterile mice tended to restore the microbial community co-occurrence network originally present in these mice. Our data are helpful for the study of giant panda flora-associated animals and provide new insights for the in vitro study of giant panda intestinal flora. IMPORTANCE The giant panda is a unique vulnerable mammal in western China, and its main cause of death is digestive system diseases regardless of whether these animals are in the wild or in captivity. The relationship between the intestinal flora and the host exerts a significant impact on the nutrition and health of the giant pandas. However, the protected status of the giant panda has made in vivo, repeatable, and large-sample sampling studies of their intestinal flora difficult. This greatly hinders the research depth of the giant panda intestinal flora from the source. The development and utilization of specific animal models to simulate the structure and characteristics of the intestinal flora provide another means to deal with these research limitations. However, current research examining giant panda flora-associated animals is limited. This study is the first to reveal dynamic changes in the fecal flora of giant pandas in mice after transplantation.

20.
Front Immunol ; 13: 1007202, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36189301

RESUMO

The oral mucosal vaccine has great potential in preventing a series of diseases caused by porcine circovirus type 2 (PCV2) infection. This study constructed a recombinant Bacillus subtilis RB with PCV2 Capsid protein (Cap) on its spore surface and cotB as a fusion partner. The immune properties of the recombinant strain were evaluated in a mouse model. IgA in intestinal contents and IgG in serum were detected by enzyme-linked immunosorbent assay (ELISA). The results demonstrated that recombinant spores could activate strong specific mucosal and humoral immune responses. In addition, spores showed good mucosal immune adjuvant function, promoting the proliferation of CD3+, CD4+ and CD8+ T cells and other immune cells. We also found that the relative expression of inflammatory cytokines such as IL-1ß, IL-6, IL-10, TNF-α and IFN in the small intestinal mucosa was significantly up-regulated under the stimulation of recombinant bacteriophage. These effects are important for the balance of Th1/Th2-like responses. In summary, our results suggest that recombinant B. subtilis RB as a feed additive provides a new strategy for the development of novel and safe PCV2 mucosal subunit vaccines.


Assuntos
Circovirus , Vacinas Virais , Adjuvantes Imunológicos , Animais , Anticorpos Antivirais , Bacillus subtilis/genética , Proteínas do Capsídeo/genética , Circovirus/genética , Imunoglobulina A , Imunoglobulina G , Interleucina-10 , Interleucina-6 , Camundongos , Esporos Bacterianos , Suínos , Fator de Necrose Tumoral alfa , Vacinas de Subunidades Antigênicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...