Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Environ Pollut ; 304: 119220, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35358633

RESUMO

The application of exogenous biodegradation strains in pesticide-polluted soils encounters the challenges of migration and persistence of inoculants. In this study, the degradation characteristics, vertical migration capacity, and microbial ecological risk assessment of an enhanced green fluorescent protein (EGFP)-tagged 2-Methyl-4-chlorophenoxyacetic acid (MCPA)-degrading strain Cupriavidus gilardii T1 (EGFP) were investigated in the laboratory and field soils. The optimum remediation conditions for T1 (EGFP) was characterized in soils. Meanwhile, leaching experiments showed that T1 (EGFP) migrated vertically downwards in soil and contribute to the degradation of MCPA at different depths. After inoculation with T1 (EGFP), a high expression levels of EGFP gene was observed at 28 d in the laboratory soil and at 45 d in the field soil. The degradation rates of MCPA were ≥ 60% in the laboratory soil and ≥ 48% in the field soil, indicating that T1 (EGFP) can efficiently and continuously remove MCPA in both laboratory and field conditions. In addition, the inoculation of T1 (EGFP) not only showed no significant impact on the soil microbial community structure but also can alleviate the negative effects induced by MCPA to some extent. Overall, our findings suggested that T1 (EGFP) strain is an ecologically safe resource for the in situ bioremediation of MCPA-contaminated soils.


Assuntos
Ácido 2-Metil-4-clorofenoxiacético , Herbicidas , Poluentes do Solo , Ácido 2-Metil-4-clorofenoxiacético/metabolismo , Biodegradação Ambiental , Cupriavidus , Herbicidas/análise , Solo/química , Microbiologia do Solo , Poluentes do Solo/análise
2.
Sci Total Environ ; 731: 139183, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32388161

RESUMO

Functional durability of bio-augmented microbes in contaminated fields remains a major challenge in bioremediation. In the present study, various immobilization materials and compositional combinations were designed and compared to enhance the functional durability of Pseudomonas stutzeri sp. Y2 for degradation of simazine, one of the most used herbicides, in industrial wastewater and maize fields. Among four combinations of materials tested, the optimal combination obtained from the orthogonal array trials was 14% polyvinyl alcohol (PVA), 1-3% sodium alginate (SA), 2% activated carbon (AC), and 1-2% Y2 cells (PSC-Y2), which yielded 1.7 fold faster degradation of simazine at 50 mg L-1 than that by free Y2 cells in the industrial wastewater. The degradation half-lives (DT50) of simazine (10 mg L-1) by free Y2 cells and PSC-Y2 was 1.1 d and 5.3 d in laboratory soil, respectively. The DT50 of simazine by PSC-Y2 at the recommended and double dosages of simazine (0.45 and 0.9 g ai·m-2) was 17.2 d and 12.4 d in the maize fields, respectively, in comparison with 23 d and 17.4 d by free Y2 cells. In addition, the PSC-Y2 degraded 100% of atrazine and terbuthylazine, and 96% of propazine at an initial concentration of 50 mg L-1 each in 4 days. This study provides an immobilization strategy to stabilize bacteria and prolong bacterial functions to treat s-triazine herbicides contaminated water and soil.


Assuntos
Atrazina , Herbicidas/análise , Pseudomonas stutzeri , Simazina/análise , Triazinas , Águas Residuárias , Zea mays
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...