Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Poult Sci ; 103(2): 103270, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38056054

RESUMO

This experiment aims to evaluate the effect of bile acids (BAs) in alleviating fatty liver disease induced by a high-fat diet (HFD) in broilers, and the modulation of the gut microbiota involved in this process. A total of 192 one-day-old Arbor Acres (AA) commercial male broilers were randomly divided into 4 groups and treated with the following diet: a basal-fat diet (BFD), a basal-fat diet plus bile acids (BFD + BAs), an HFD, and a high-fat diet plus bile acids (HFD + BAs). Bile acids were supplemented at the early growth stage (3-7 d), middle stage (17-21 d), and late stage (31-35 d). Results showed that BAs treatment had a significant effect on body weight on 14 d and 35 d, and increased the breast muscle weight and its index, but decreased the liver weight and abdominal fat weight on 35 d (P < 0.05). The supplementation of BAs significantly improved the serum lipid profile and decreased the level of triglycerides (TG), total cholesterol (TCHO), and nonesterified fatty acids (NEFA) on 35 d (P < 0.05). Dietary BAs supplementation significantly alleviated the hepatic TG deposition induced by HFD (P < 0.05), which was accompanied by upregulation of peroxisome proliferator-activated receptor gamma (PPARγ) and lipoprotein lipase (LPL) gene expression (P < 0.05). Moreover, the expression levels of hepatic gene adipose triglyceride lipase (ATGL), peroxisome proliferator-activated receptor α (PPARα), and apolipoprotein B (APOB) were greatly increased by BAs treatment. The analysis of 16S rRNA sequencing showed that the microbial diversity of the cecal digesta was increased by BAs in broilers with elevated abundances of Firmicutes, Lactobacillus, Anaerostipes, Sellimonas, and CHKCI002 and decreased abundances of Barnesiella and Akkermansia genus (P < 0.05). Hepatic TG content was positively correlated with the abundance of Oscillospiraceae, but it was negatively correlated with the abundance of Lactobacillus in cecal digesta (P < 0.05). These results indicate that dietary BAs can improve growth performance and alleviate fatty liver disease induced by an HFD via modulating gut microbiota in broilers.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Masculino , Animais , Dieta Hiperlipídica/efeitos adversos , Dieta Hiperlipídica/veterinária , Galinhas/fisiologia , Ácidos e Sais Biliares/metabolismo , RNA Ribossômico 16S , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/veterinária , Suplementos Nutricionais/análise , Triglicerídeos/metabolismo
2.
Microorganisms ; 11(9)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37764152

RESUMO

This study was devoted to the comparison of the probiotic effect of compound probiotics to antibiotics as a feed additive for chicken. Two hundred and seventy newly hatched yellow-feather broilers were randomly divided into three groups: the control group (Con), probiotics (Pb), and antibiotics group (Ab). The Pb group received compound probiotics (Bifidobacterium, Lactobacillus acidophilus, Streptococcus faecalis, and yeast) via drinking water for 24 days. The Ab group received antibiotics (zinc bacitracin and colistin sulfate) in their diet for 24 days. All broilers were slaughtered on day 42. Compared with the Con group, the body weight was significantly increased on days 13, 28, and 42 in the Pb group (p < 0.05), and markedly increased on day 28 in the Ab group (p < 0.05). Compared with the Ab group, the body weight of the broilers in the Pb group increased significantly on day 13 (p < 0.05). Compared to the Con and Pb groups, the antibiotics treatment reduced the feed intake (p < 0.05), but there was no significant difference in the feed conversion ratio between the Ab and Pb groups (p > 0.05). The feed conversion ratio of the broilers treated with antibiotics or probiotics significantly decreased compared to the Con group (p < 0.05). The depth of duodenum, jejunum, and ileum crypts in the Pb group decreased significantly compared to the Con and Ab group (p < 0.05). The ratio of the villi length to crypt depth of duodenum, jejunum, and ileum epithelium was significantly increased in the Pb group compared to the Con group (p < 0.05). The genera Bacteroides and Barnesiella were the most significantly enriched bacteria in the Ab and Pb groups, respectively (p < 0.05). The expression of the genes related to antibiotic resistance was significantly decreased in the Pb group compared to the Ab group (p < 0.05). Although both compound probiotics and antibiotics can improve growth performance, antibiotics increased the abundance of harmful bacteria and drug-resistant genes, while probiotics increased Barnesiella abundance, which is related to a decrease in the drug-resistant gene expression. Moreover, the probiotics treatment improved small intestinal morphology and fecal emissions, while antibiotics have no significant effect on these indicators, indicating a bright future for probiotics as an alternative to feed antibiotics in the yellow-feather broiler industry.

3.
Int J Mol Sci ; 24(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37298147

RESUMO

Ferroptosis participates in the occurrence and development of neurological disorders. Modulating ferroptosis may have therapeutic potential in nervous system diseases. Therefore, TMTbased proteomic analysis in HT-22 cells was performed to identify erastin-induced differentially expressed proteins. The calcium-transporting ATP2B3 (ATP2B3) was screened as a target protein. ATP2B3 knockdown markedly alleviated the erastin-induced decrease in cell viability and elevated ROS (p < 0.01) and reversed the up-regulation of oxidative stress-related proteins polyubiquitin-binding protein p62 (P62), nuclear factor erythroid 2-related factor2 (NRF2), heme oxygenase-1 (HO-1), and NAD(P)H quinone oxidoreductase-1 (NQO1) protein expression (p < 0.05 or p < 0.01) and the down-regulation of Kelch-like ECH-associated protein 1(KEAP1) protein expression (p < 0.01). Moreover, NRF2 knockdown, P62 inhibition, or KEAP1 overexpression rescued the erastin-induced decrease in cell viability (p < 0.05) and increase in ROS production (p < 0.01) in HT-22 cells, while simultaneous overexpression of NRF2 and P62 and knockdown of KEAP1 partially offset the relief effect of ATP2B3 inhibition. In addition, knockdown of ATP2B3, NRF2, and P62 and overexpression of KEAP1 significantly down-regulated erastin-induced high expression of the HO-1 protein, while HO-1 overexpression reversed the alleviating effects of ATP2B3 inhibition on the erastin-induced decrease in cell viability (p < 0.01) and increase in ROS production (p < 0.01) in HT-22 cells. Taken together, ATP2B3 inhibition mediates the alleviation of erastin-induced ferroptosis in HT-22 cells through the P62-KEAP1-NRF2-HO-1 pathway.


Assuntos
Ferroptose , Fator 2 Relacionado a NF-E2 , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais , Espécies Reativas de Oxigênio/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Proteômica , Estresse Oxidativo
4.
Life Sci ; 321: 121577, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36933826

RESUMO

AIMS: Evidence is accumulating that maternal inflammation induces phenotypic changes in the next generation. However, whether maternal preconceptional inflammation alters metabolic and behavioral phenotypes in offspring remains poorly understood. MAIN METHODS: Female mice were injected with either lipopolysaccharide or saline to establish the inflammatory model and then allowed to mate with normal males. Offspring from both control and inflammatory dams were subsequently given chow diet and water ad libitum, without any challenge, for metabolic and behavioral tests. KEY FINDINGS: Male offspring derived from inflammatory mothers (Inf-F1) maintained on the chow diet developed impaired glucose tolerance and hepatic ectopic fat deposition. Hepatic transcriptome sequencing showed the largest gene changes related to the metabolic pathway. Moreover, Inf-F1 mice exhibited anxiety- and depressive-like behaviors and were accompanied by higher serum corticosterone concentration and lower glucocorticoid receptor abundance in the hippocampus. SIGNIFICANCE: The results expand the current knowledge of developmental programming of health and disease to include maternal preconceptional health and provide a basis for understanding metabolic and behavioral alterations in offspring linked to maternal inflammation.


Assuntos
Dieta Hiperlipídica , Efeitos Tardios da Exposição Pré-Natal , Camundongos , Feminino , Animais , Masculino , Humanos , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Inflamação/metabolismo , Fígado/metabolismo , Fenótipo
5.
Biology (Basel) ; 12(2)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36829476

RESUMO

Numerous studies have discovered that chronic stress induces metabolic disorders by affecting iron and zinc metabolism, but the relationship between chronic stress and copper metabolism remains unclear. Here, we explore the influence of chronic corticosterone (CORT) exposure on copper metabolism and its regulatory mechanism in mice. Mice were treated with 100 µg/mL CORT in drinking water for a 4-week trial. We found that CORT treatment resulted in a significant decrease in plasma copper level, plasma ceruloplasmin activity, plasma and liver Cu/Zn-SOD activity, hepatic copper content, and liver metallothionein content in mice. CORT treatment led to the reduction in duodenal expression of copper transporter 1 (CTR1), duodenal cytochrome b (DCYTB), and ATPase copper-transporting alpha (ATP7A) at the mRNA and protein level in mice. CORT treatment activated nuclear glucocorticoid receptor (GR) and down-regulated CRT1 expression in Caco-2 cells, whereas these phenotypes were reversible by an antagonist of GR, RU486. Chromatin immunoprecipitation analysis revealed that GR bound to the Ctr1 promoter in Caco-2 cells. Transient transfection assays in Caco-2 cells demonstrated that the Ctr1 promoter was responsive to the CORT-activated glucocorticoid receptor, whereas mutation/deletion of the glucocorticoid receptor element (GRE) markedly impaired activation of the Ctr1 promoter. In addition, CORT-induced downregulation of Ctr1 promoter activity was markedly attenuated in Caco-2 cells when RU486 was added. These findings present a novel molecular target for CORT that down-regulates intestinal CTR1 expression via GR-mediated trans-repression in mice.

6.
Biol Trace Elem Res ; 201(4): 1761-1771, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35590120

RESUMO

To explore the changes in iron metabolism and mitochondrial function exposed to chronic psychological stress, seventy-five male mice aged 5 ~ 6 weeks were randomly sorted into 2 groups: control group and chronic psychological stress group. Mice were conducted by communication box to induce psychological stress for 21 consecutive days. The results showed that chronic psychological stress led to a significant reduction in average daily gain (P < 0.01) and the final weight (P < 0.05). Chronic psychological stress greatly increased plasma and duodenal iron level (P < 0.05), whereas markedly decreased hepatic iron content in mice (P < 0.05). Increasing expression of duodenal DCYTB and FPN (P < 0.05) was observed in mice exposed to chronic psychological stress. Moreover, chronic psychological stress greatly enhanced hepatic TFR1, FTL, and FPN protein expression (P < 0.05) in mice. Additionally, chronic psychological stress enhanced the levels of hepatic NADH, NAD + , ATP, mtDNA content, mtDNA-encoded genes, and the activity of mitochondrial complex I and II (P < 0.05). Taken together, chronic psychological stress impairs growth, disrupts iron metabolism, and enhances hepatic mitochondrial function in mice. These results will provide new insights for understanding the mechanisms of iron metabolism and mitochondrial function during chronic psychological stress.


Assuntos
Ferro , Mitocôndrias , Camundongos , Masculino , Animais , Ferro/metabolismo , Mitocôndrias/metabolismo , Fígado/metabolismo , Receptores da Transferrina/metabolismo , DNA Mitocondrial/metabolismo
7.
Microorganisms ; 10(7)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35889001

RESUMO

The present study aims to investigate the effect of γ-aminobutyric acid (GABA) on liver lipid metabolism and on AA broilers. Broilers were divided into three groups and fed with low-fat diets, high-fat diets, and high-fat diets supplemented with GABA. Results showed that GABA supplementation decreased the level of triglyceride (TG) in the serum and liver of broilers fed high-fat diets, accompanied by up-regulated mRNA expression of genes related to lipolysis and ß-oxidation in the liver (p < 0.05). Furthermore, GABA supplementation increased liver antioxidant capacity, accompanied by up-regulated mRNA expression of antioxidant genes (p < 0.05). 16S rRNA gene sequencing showed that GABA improved high-fat diet-induced dysbiosis of gut microbiota, increased the relative abundance of Bacteroidetes phylum and Barnesiella genus, and decreased the relative abundance of Firmicutes phylum and Ruminococcus_torques_group and Romboutsia genus (p < 0.05). Moreover, GABA supplementation promoted the production of propionic acid and butyric acid in cecal contents. Correlation analysis further suggested the ratio of Firmicutes/Bacteroidetes negatively correlated with hepatic TG content, and positively correlated with cecal short chain fatty acids content (r > 0.6, p < 0.01). Together, these data suggest that GABA supplementation can inhibit hepatic TG deposition and steatosis via regulating gut microbiota in broilers.

8.
Anim Biosci ; 35(8): 1184-1194, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34991199

RESUMO

OBJECTIVE: High concentrate diets are widely used to satisfy high-yielding dairy cows; however, long-term feeding of high concentrate diets can cause subacute ruminal acidosis (SARA). The endocrine disturbance is one of the important reasons for metabolic disorders caused by SARA. However, there is no current report about thyroid hormones involved in liver metabolic disorders induced by a high concentrate diet. METHODS: In this study, 12 mid-lactating dairy cows were randomly assigned to HC (high concentrate) group (60% concentrate of dry matter, n = 6) and LC (low concentrate) group (40% concentrate of dry matter, n = 6). All cows were slaughtered on the 21st day, and the samples of blood and liver were collected to analyze the blood biochemistry, histological changes, thyroid hormones, and the expression of genes and proteins. RESULTS: Compared with LC group, HC group showed decreased serum triglyceride, free fatty acid, total cholesterol, low-density lipoprotein cholesterol, increased hepatic glycogen, and glucose. For glucose metabolism, the gene and protein expression of glucose-6-phosphatase and phosphoenolpyruvate carboxykinase 1 in the liver were significantly up-regulated in HC group. For lipid metabolism, the expression of sterol regulatory element-binding protein 1, long-chain acyl-CoA synthetase 1, and fatty acid synthase in the liver was decreased in HC group, whereas carnitine palmitoyltransferase 1α and peroxisome proliferator activated receptor α were increased. Serum triiodothyronine, thyroxin, free triiodothyronine (FT3), and hepatic FT3 increased in HC group, accompanied by increased expression of thyroid hormone receptor (THR) in the liver. CONCLUSION: Taken together, thyroid hormones may increase hepatic gluconeogenesis, ß-oxidation and reduce fatty acid synthesis through the THR pathway to participate in the metabolic disorders caused by a high concentrate diet.

9.
Anim Nutr ; 7(4): 1315-1328, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34786504

RESUMO

Subacute ruminal acidosis (SARA) is a common metabolic disease in the dairy farming industry which is usually caused by an excessive amount of high concentrate diet. SARA not only threatens animal welfare but also leads to economic losses in the farming industry. The liver plays an important role in the distribution of nutritional substances and metabolism; however, a high concentrate diet can cause hepatic metabolic disorders and liver injury. Recently, noncoding RNA has been considered as a critical regulator of hepatic disease, however, its role in the bovine liver is limited. In this study, 12 mid-lactating dairy cows were randomly assigned to a control (CON) group (40% concentrate of dry matter, n = 6) and a SARA group (60% concentrate of dry matter, n = 6). After 21 d of treatment, all cows were sacrificed, and liver tissue samples were collected. Three dairy cows were randomly selected from the CON and SARA groups respectively to perform whole transcriptome analysis. More than 20,000 messenger RNA (mRNA), 10,000 long noncoding RNA (lncRNA), 3,500 circular RNA (circRNA) and 1,000 micro RNA (miRNA) were identified. Furthermore, 43 mRNA, 121 lncRNA and 3 miRNA were differentially expressed, whereas no obvious differentially expressed circRNA were detected between the 2 groups. Gene Ontology (GO) annotation revealed that the differentially expressed genes were mainly enriched in oxidoreductase activity, stress, metabolism, the immune response, cell apoptosis, and cell proliferation. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the deferentially expressed genes were highly enriched in the phosphatidylinositol 3 kinase (PI3K)-serine/threonine kinase (AKT) signaling pathway (P < 0.05). According to KEGG pathway analysis, the differentially expressed lncRNA (DElncRNA) target genes were mainly related to proteasomes, peroxisomes, and the hypoxia-inducible factor-1 signaling pathway (P < 0.005). Further bioinformatics and integrative analyses revealed that the lncRNA were strongly correlated with mRNA; therefore, it is reasonable to speculate that lncRNA potentially play important roles in the liver dysfunction induced by SARA. Our study provides a valuable resource for future investigations on the mechanisms of SARA to facilitate an understanding of the importance of lncRNA, and offer functional RNA information.

10.
Biology (Basel) ; 10(7)2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34356508

RESUMO

It is well-known that hepatic iron dysregulation, which is harmful to health, can be caused by stress. The aim of the study was to evaluate chronic variable stress (CVS) on liver damage, hepatic ferrous iron deposition and its molecular regulatory mechanism in rats. Sprague Dawley rats at seven weeks of age were randomly divided into two groups: a control group (Con) and a CVS group. CVS reduces body weight, but increases the liver-to-body weight ratio. The exposure of rats to CVS increased plasma aspartate aminotransferase (AST), alkaline phosphatase (ALP) and hepatic malondialdehyde (MDA) levels, but decreased glutathione peroxidase (GSH-Px) activity, resulting in liver damage. CVS lowered the total amount of hepatic iron content, but induced hepatic Fe(II) accumulation. CVS up-regulated the expression of transferrin receptor 1 (TFR1) and ZRT/IRT-like protein 14 (ZIP14), but down-regulated ferritin and miR-181 family members. In addition, miR-181 family expression was found to regulate ZIP14 expression in HEK-293T cells by the dual-luciferase reporter system. These results indicate that CVS results in liver damage and induces hepatic Fe(II) accumulation, which is closely associated with the up-regulation of ZIP14 expression via the miR-181 family pathway.

11.
Nutrients ; 13(7)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34371841

RESUMO

Excessive liver lipid deposition is a vital risk factor for the development of many diseases. Here, we fed Sprague-Dawley rats with a control or α-lipoic acid-supplemented diet (0.2%) for 5 weeks to elucidate the effects of α-lipoic acid on preventive ability, hepatic lipid metabolism-related gene expression, and the involved regulatory mechanisms. In the current study, α-lipoic acid supplementation lowered plasma triglyceride level and hepatic triglyceride content. Reduced hepatic lipid deposition was closely associated with inhibiting fatty acid-binding protein 1 and fatty acid synthase expression, as well as increasing phosphorylated hormone-sensitive lipase expression at the protein level in α-lipoic acid-exposed rats. Hepatic miRNA sequencing revealed increased expression of miR-3548 targeting the 3'untranslated region of Fasn mRNA, and the direct regulatory link between miRNA-3548 and FASN was verified by dual-luciferase reporter assay. Taken together, α-lipoic acid lowered hepatic lipid accumulation, which involved changes in miRNA-mediated lipogenic genes.


Assuntos
Suplementos Nutricionais , Ácido Graxo Sintase Tipo I/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , MicroRNAs/metabolismo , Ácido Tióctico/farmacologia , Animais , Ácido Graxo Sintases/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Expressão Gênica/efeitos dos fármacos , Lipogênese/genética , Fígado/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Triglicerídeos/metabolismo
12.
Free Radic Biol Med ; 162: 478-489, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33189867

RESUMO

The immunoinhibitory effect of glucocorticoid and immunoenhancing attributes of melatonin (MEL) are well known, however, the involvement of glucocorticoid receptor (GR) in melatonin modulation of bacterial toxins caused-inflammation has not been studied in colon. Pyocyanin (PCN), a toxin released by Pseudomonas aeruginosa, can destroy cells through generating superoxide products and inflammatory response. Here we report that PCN treatment elevated the generation of reactive oxygen species (ROS), which further lead to mitochondrial swelling and caspase cascades activation both in vivo and in vitro. However, MEL treatment alleviated the oxidative stress caused by PCN on cells through scavenging ROS and restoring the expression of antioxidant enzyme so that to effectively alleviate the apoptosis. Large amounts of ROS can activate the NLRP3 signaling pathway, so MEL inhibited PCN induced NLRP3 inflammasome activation and inflammatory cytokines (IL-1ß, IL-8, and TNF-α) secretion. In order to further investigate the molecular mechanism, goblet cells were exposed to MEL and PCN in the presence of luzindole and RU486, inhibitors of MEL receptors and GR respectively. It was found that PCN significantly inhibited the expression level of GR, and MEL effectively alleviated the inhibition phenomenon. Moreover, we found that MEL mainly upregulated the expression of GR to achieve its anti-inflammatory and anti-apoptotic functions rather than through its own receptor (MT2) in colon goblet cells. Therefore, MEL can reverse the inhibitory effects of PCN on GR/p-GR expression to present its anti-oxidative and anti-apoptotic function.


Assuntos
Toxinas Bacterianas , Melatonina , Animais , Apoptose , Colo , Humanos , Inflamassomos , Melatonina/farmacologia , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Piocianina , Espécies Reativas de Oxigênio , Receptores de Glucocorticoides/genética
13.
Animals (Basel) ; 10(3)2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32204385

RESUMO

This study aimed to examine hepatic function and inflammatory response in broilers with fatty livers, following acute lipopolysaccharide (LPS) challenge. One-day-old Lihua yellow broilers were fed a basal diet. Broilers were divided into four groups: control (CON), corticosterone treatment (CORT), LPS treatment (LPS), and LPS and CORT treatment (LPS&CORT). Results show that CORT induced an increase in plasma and liver triglycerides (TGs), which were accompanied by severe hepatic steatosis. The LPS group showed hepatocyte necrosis with inflammatory cell infiltration. Total liver damage score in the LPS&CORT group was significantly higher than that in the LPS group (p < 0.05). Activity levels of plasma alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were similar in the CON and CORT groups, but higher in the LPS group. Gene expression upregulation of the proinflammatory cytokines (NF-κB, IL-1ß, IL-6, IFN-γ, and iNOS) was also noted in the LPS group (p < 0.05). In particular, LPS injection exacerbated the gene expression of these proinflammatory cytokines, even when accompanied by CORT injections (p < 0.05). In summary, our results indicate that broilers suffering from fatty liver disease are more susceptible to the negative effects of LPS, showing inflammatory response activation and more severe damages to the liver.

14.
Biol Trace Elem Res ; 196(2): 590-596, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31707638

RESUMO

Abnormal hepatic iron metabolism is detrimental to health. The objective of this study was to detect repeated restraint stress on liver iron metabolism in rats. Twenty-four male rats aged 7 weeks were randomly divided into 2 groups: control group (Con) and repeated restraint stress group (RS). Rats were subjected to 6 h of daily restraint stress for 14 consecutive days in the repeated restraint stress group. The results showed that repeated restraint stress exposure decreased growth performance including impaired final weight (P = 0.07), reducing average daily gain (P = 0.01), and average daily feed intake (P = 0.00) during the 14-day experimental period. Repeated restraint stress exposure did not affect hemoglobin content and plasma iron parameters except downregulated unsaturated iron-binding capacity (P = 0.04). Repeated restraint stress exposure inhibited liver development (P = 0.03) and induced liver iron accumulation (P = 0.05). In addition, repeated restraint stress downregulated the expression of transferrin (TF) and transferrin receptor 2 (TFR2) at the mRNA level (P < 0.01), but upregulated at the protein level (P = 0.03 for TF; P = 0.00 for TFR2). These results indicated that repeated restraint stress induces hepatic iron accumulation, which is closely related to higher expression of hepatic TFR2 protein in rats.


Assuntos
Ferro/metabolismo , Fígado/metabolismo , Receptores da Transferrina/genética , Animais , Masculino , Ratos , Ratos Wistar , Receptores da Transferrina/metabolismo , Restrição Física , Transferrina/genética , Transferrina/metabolismo
15.
Cells ; 8(10)2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31554201

RESUMO

Ferroportin (FPN) is the only known cellular iron exporter in mammalian. However, post-transcriptional regulation of intestinal FPN has not yet been completely understood. In this study, bioinformatics algorithms (TargetScan, PicTar, PITA, and miRanda) were applied to predict, screen and obtain microRNA-17 family members (miR-17, miR-20a, miR-20b, and miR-106a) targeting FPN, 'seed sequence' and responding binding sites on the 3'untranslated region (3'UTR) region of FPN. Dual-luciferase reporter assays revealed miRNA-17 family members' mimics decreased the luciferase activity, whereas their inhibitors increased the luciferase activity. Compared with the FPN 3'UTR wild type reporter, co-transfection of a miRNA-17 family members' over-expression plasmids and FPN 3'UTR mutant reporters enhanced the luciferase activity in HCT116 cells. Transfection with miR-20b overexpression plasmid significantly enhanced its expression, and it inhibited endogenous FPN protein expression in Caco-2 cells. Additionally, tail-vein injection of miR-20b resulted in increasing duodenal miR-20b expression, decreasing duodenal FPN protein expression, which was closely related to lower plasma iron level in mice. Taken together, these data suggest that the miR-20b is identified to regulate intestinal FPN expression in vitro and in vivo, which will provide a potential target for intestinal iron exportation.


Assuntos
Proteínas de Transporte de Cátions/genética , Mucosa Intestinal/metabolismo , MicroRNAs/fisiologia , Regiões 3' não Traduzidas , Animais , Células CACO-2 , Proteínas de Transporte de Cátions/metabolismo , Regulação para Baixo/genética , Regulação da Expressão Gênica , Células HCT116 , Humanos , Ferro/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
16.
Biochem Biophys Res Commun ; 518(1): 7-13, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31439374

RESUMO

Chronic stress has a profound effect on health in both animals and humans. Dexamethasone (Dex), a synthetic glucocorticoid, is used to induce chronic stress in many studies. The impact of chronic stress on epithelial cells of hindgut of ruminants is still unknown. In this study, we investigated the effect of chronic stress induced by long term injection of low dosage of Dex on the colonic epithelium of goats. The results showed that Dex exposure increased the number of TUNEL-positive cells, upregulated caspase-3 and caspase-8 enzyme activity, but decreased protein expression of cell proliferation markers proliferating cell nuclear antigen (PCNA) and Cyclin D2(CCND2). It also activated TLR-4 and NF-κB pathway and increased the transcription levels of vital inflammatory cytokines such as interleukin-10 (IL-10), interleukin-1ß (IL-1ß), and inducible nitric oxide synthase 2 (iNOS2). Chronic stress down-regulated the methylation level of total DNA, suggesting a mechanism for the transcriptional activation of genes, such as claudin-1, claudin-4, ZO-1, and cell cycle-related genes. Taken together, long-term injection of a low dosage of Dex caused damage to the colon epithelium accompanied with the inhibition of cell proliferation and the activation of cell apoptosis and inflammation. However, a general up-regulation of genes expression induced by Dex is due to a lower level of genomic DNA methylation.


Assuntos
Apoptose/efeitos dos fármacos , Colo/patologia , Dexametasona/efeitos adversos , Células Epiteliais/metabolismo , Cabras/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Receptor 4 Toll-Like/metabolismo , Animais , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Citocinas/genética , Citocinas/metabolismo , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/genética , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/genética , Mediadores da Inflamação/metabolismo , Masculino , NF-kappa B/metabolismo , Regiões Promotoras Genéticas/genética , Transdução de Sinais/efeitos dos fármacos , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo
17.
Front Physiol ; 10: 819, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31316397

RESUMO

Divalent metal transporter 1 (DMT1) is a key transporter of iron uptake and delivering in human and animals. However, post-transcriptional regulation of DMT1 is poorly understood. In this study, bioinformatic algorithms (TargetScan, PITA, miRanda, and miRDB) were applied to predict, screen, analyze, and obtain microRNA-16 family members (miR-16, miR-195, miR-497, and miR-15b) targeting DMT1, seed sequence and their binding sites within DMT1 3' untranslated region (3' UTR) region. As demonstrated by dual-luciferase reporter assays, luciferase activity of DMT1 3' UTR reporter was impaired/enhanced when microRNA-16 family member over-expression plasmid/its inhibitor was transfected to HCT116 cells. Corroboratively, co-transfection of microRNA-16 family member over-expression plasmid and DMT1 3' UTR mutant reporter repressed the luciferase activity in HCT116 cells. In addition, over-expression microRNA-16 family member augmented its expression and diminished DMT1 protein expression in HCT116 cells. Interestingly, tail vein injection of miR-16 assay revealed reduced plasma iron levels, higher miR-16 expression, and lower DMT1 protein expression in the duodenum of mice. Taken together, we provide evidence that microRNA-16 family (miR-16, miR-195, miR-497, and miR-15b) is confirmed to repress intestinal DMT1 expression in vitro and in vivo, which will give valuable insight into post-transcriptional regulation of DMT1.

18.
J Cell Physiol ; 234(4): 3621-3633, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30471106

RESUMO

N-(3-oxododecanoyl)-l-homoserine lactone (3-oxo-C12-HSL), a quorum-sensing (QS) molecule produced by Gram-negative bacteria in the gastrointestinal tract, adversly impacts host cells. Our previous study demonstrated that 3-oxo-C12-HSL induced a decrease in cell viability via cell apoptosis and eventually disrupted mucin synthesis from LS174T goblet cells. However, the molecular mechanism underlying cell apoptosis and whether pyroptosis was involved in this process are still unknown. In this study, we emphasized on the caspases signal pathway and sterile inflammation to reveal the harmful effects of 3-oxo-C12-HSL on LS174T goblet cells. Our data showed that 3-oxo-C12-HSL is a major inducer of oxidative stress indicated by a high level of intracellular reactive oxygen species (ROS). However, TQ416, an inhibitor of paraoxonase 2, can effectively block oxidative stress. A higher ROS level is the trigger for activating the caspase-1 and 3 cascade signal pathways. Blockade of ROS synthesis and caspase-1 and 3 cascades can obviously rescue the viability of LS174T cells after 3-oxo-C12-HSL treatment. We also found that paralleled with a higher level of ROS and caspases activation, an abnormal expression of proinflammatory cytokines was induced by 3-oxo-C12-HSL treatment; however, the blockage of TLRs-NF-κB pathway cannot restore cell viability and secretary function. These data collectively indicate that 3-oxo-C12-HSL exposure induces damages to cell viability and secretary function of LS174T goblet cells, which is mediated by oxidative stress, cell apoptosis, and sterile inflammation. Overall, the data in this study will provide a better understanding of the harmful impacts of some QS molecules on host cells and their underlying mechanism.


Assuntos
4-Butirolactona/análogos & derivados , Caspase 1/metabolismo , Células Caliciformes/efeitos dos fármacos , Homosserina/análogos & derivados , Piroptose/efeitos dos fármacos , Percepção de Quorum , 4-Butirolactona/toxicidade , Arildialquilfosfatase/metabolismo , Caspase 3/metabolismo , Linhagem Celular , Ativação Enzimática , Células Caliciformes/metabolismo , Células Caliciformes/patologia , Homosserina/toxicidade , Humanos , Mediadores da Inflamação/metabolismo , Mucinas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
19.
J Agric Food Chem ; 66(44): 11612-11621, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30350980

RESUMO

High-fat diet-induced obesity is known to disturb hepatic iron metabolism in a time-dependent manner. The mechanism of decreased hepatic iron deposits induced by long-term high-fat diet needs to be further investigated. In this study, 24 6-week-old male Sprague-Dawley rats were given a 16-week high-fat diet and hepatic iron metabolism was examined. High-fat diet feeding considerably decreased hepatic iron contents, enhanced transferrin expression, and reduced the expression of ferritin heavy chain, ferritin light chain, and hepatic iron uptake-related proteins (transferrin receptor 2, TFR2, and ZRT/IRT-like protein 14, ZIP14) in rats. Impaired expression of hepatic TFR2 coincided with DNA hypermethylation on the promoter and repressed expression of transcription factor hepatocyte nuclear factor 4α (HNF4α). miR-181 family expression was markedly increased and verified to regulate Zip14 expression by the dual-luciferase reporter system. Taken together, long-term high-fat diet decreases hepatic iron storage, which is closely linked to inhibition of liver iron transport through the TFR2 and ZIP14-dependent pathway.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Ferro/metabolismo , Fígado/metabolismo , Receptores da Transferrina/metabolismo , Animais , Transporte Biológico , Proteínas de Transporte de Cátions/genética , Dieta Hiperlipídica/efeitos adversos , Regulação para Baixo , Masculino , Ratos , Ratos Sprague-Dawley , Receptores da Transferrina/genética
20.
BMC Microbiol ; 18(1): 112, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30200878

RESUMO

BACKGROUND: Dexamethasone (Dex), an artificially synthetic cortisol substitute, is commonly used as an anti-inflammatory drug, and is also employed to mimic the stress state experimentally. It is well known that chronic stress disturbs the gut microbiota community and digestive functions. However, no relevant studies have been conducted in ruminants. RESULTS: In this study, a low dosage of Dex (0.2 mg/kg body weight, Dex group, n = 5) was consecutively injected intramuscularly for 21 days to simulate chronic stress in growing goats. Goats were injected with saline (0.2 mg/kg body weight) as the control group (Con, n = 5). Dex-treated goats showed a higher number of white blood cells and blood glucose levels (p < 0.01), but lower dry matter intake (DMI) and body weight (p < 0.01) than those of saline-injected goats. Plasma cortisol concentration decreased significantly in response to the Dex injection compared to the control (p < 0.05). The Dex treatment did not change most ruminal volatile fatty acid (VFAs) concentrations before the morning feeding after 1-21 days of treatment (p > 0.05); however, ruminal VFA concentrations decreased dramatically 2, 4, 6, and 8 h after the morning feeding on day 21 of the Dex injections. In this study, chronic Dex exposure did not alter the community structure of microbes or methanogenes in the rumen, caecum, or colonic digesta. Only Prevotella increased on days 7 and 14 of Dex treatment, but decreased on day 21, and Methanosphaera was the only genus of methanogene that decreased. CONCLUSIONS: Our results suggest that chronic Dex exposure retards growth by decreasing DMI, which may be mediated by higher levels of blood glucose and lower ruminal VFA production. Microbiota in the digestive tract was highly resistant to chronic Dex exposure.


Assuntos
Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Dexametasona/administração & dosagem , Microbioma Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/microbiologia , Cabras/microbiologia , Animais , Bactérias/genética , Bactérias/metabolismo , Glicemia/metabolismo , Ácidos Graxos Voláteis/metabolismo , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/metabolismo , Cabras/sangue , Hidrocortisona/sangue , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...