Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Org Lett ; 25(36): 6784-6789, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37672351

RESUMO

Herein, we present a base-mediated nucleophilic substitution reaction of α-trifluoromethylstyrenes with simple silyl enol ethers, enabling the efficient synthesis of carbonyl-substituted gem-difluoroalkenes. The merit of this protocol is exhibited by its mild reaction conditions, broad substrate scope, and scalable preparation. Notably, this method demonstrates its applicability for late-stage functionalization of structurally complex molecules. Moreover, we illustrate that the resulting products can serve as valuable precursors for the synthesis of diverse medicinally relevant compounds.

2.
Aging Dis ; 14(1): 170-183, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36818559

RESUMO

Vascular calcification and aging often increase morbidity and mortality in patients with diabetes mellitus (DM); however, the underlying mechanisms are still unknown. In the present study, we found that Bcl-2 modifying factor (BMF) and BMF antisense RNA 1 (BMF-AS1) were significantly increased in high glucose-induced calcified and senescent vascular smooth muscle cells (VSMCs) as well as artery tissues from diabetic mice. Inhibition of BMF-AS1 and BMF reduced the calcification and senescence of VSMCs, whereas overexpression of BMF-AS1 and BMF generates the opposite results. Mechanistic analysis showed that BMF-AS1 interacted with BMF directly and up-regulated BMF at both mRNA and protein levels, but BMF did not affect the expression of BMF-AS1. Moreover, knocking down BMF-AS1 and BMF suppressed the calcification and senescence of VSMCs, and BMF knockout (BMF-/-) diabetic mice presented less vascular calcification and aging compared with wild type diabetic mice. In addition, higher coronary artery calcification scores (CACs) and increased plasma BMF concentration were found in patients with DM, and there was a positive correlation between CACs and plasma BMF concentration. Thus, BMF-AS1/BMF plays a key role in promoting high glucose-induced vascular calcification and aging both in vitro and in vivo. BMF-AS1 and BMF represent potential therapeutic targets in diabetic vascular calcification and aging.

3.
Org Lett ; 24(25): 4609-4614, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35726904

RESUMO

Bicyclo[1.1.1]pentanes (BCPs) are important bioisosteres of aryl, tert-butyl groups, and internal alkynes that can impact key physicochemical properties on drug candidates. Herein, we describe a novel and efficient reaction to synthesize alkyl-alkynyl-substituted BCP derivatives by synergistic photoredox and copper catalysis at room temperature. The mild reaction conditions, simple protocol, broad functional group tolerance, and high efficiency of this procedure make it a valuable strategy for accessing alkynyl-substituted BCPs.

4.
Front Mol Neurosci ; 15: 844193, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359573

RESUMO

Aging-related neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS), are gradually becoming the primary burden of society and cause significant health-care concerns. Aging is a critical independent risk factor for neurodegenerative diseases. The pathological alterations of neurodegenerative diseases are tightly associated with mitochondrial dysfunction, inflammation, and oxidative stress, which in turn stimulates the further progression of neurodegenerative diseases. Given the potential research value, lncRNAs have attracted considerable attention. LncRNAs play complex and dynamic roles in multiple signal transduction axis of neurodegeneration. Emerging evidence indicates that lncRNAs exert crucial regulatory effects in the initiation and development of aging-related neurodegenerative diseases. This review compiles the underlying pathological mechanisms of aging and related neurodegenerative diseases. Besides, we discuss the roles of lncRNAs in aging. In addition, the crosstalk and network of lncRNAs in neurodegenerative diseases are also explored.

5.
Aging Dis ; 12(8): 1948-1963, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34881079

RESUMO

High incidences of morbidity and mortality associated with age-related diseases among the elderly population are a socio-economic challenge. Aging is an irreversible and inevitable process that is a risk factor for pathological progression of diverse age-related diseases. Spermidine, a natural polyamine, plays a critical role in molecular and cellular interactions involved in various physiological and functional processes. Spermidine has been shown to modulate aging, suppress the occurrence and severity of age-related diseases, and prolong lifespan. However, the precise mechanisms through which spermidine exerts its anti-aging effects have not been established. In this review, we elucidate on the mechanisms and roles underlying the beneficial effects of spermidine in aging from a molecular and cellular perspective. Moreover, we provide new insights into the promising potential diagnostic and therapeutic applications of spermidine in aging and age-related diseases.

6.
Signal Transduct Target Ther ; 6(1): 383, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34753929

RESUMO

Exosomes play a role as mediators of cell-to-cell communication, thus exhibiting pleiotropic activities to homeostasis regulation. Exosomal non-coding RNAs (ncRNAs), mainly microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), are closely related to a variety of biological and functional aspects of human health. When the exosomal ncRNAs undergo tissue-specific changes due to diverse internal or external disorders, they can cause tissue dysfunction, aging, and diseases. In this review, we comprehensively discuss the underlying regulatory mechanisms of exosomes in human diseases. In addition, we explore the current knowledge on the roles of exosomal miRNAs, lncRNAs, and circRNAs in human health and diseases, including cancers, metabolic diseases, neurodegenerative diseases, cardiovascular diseases, autoimmune diseases, and infectious diseases, to determine their potential implication in biomarker identification and therapeutic exploration.


Assuntos
Exossomos/genética , MicroRNAs/genética , RNA Circular/genética , RNA Longo não Codificante/genética , Doenças Autoimunes/genética , Doenças Cardiovasculares/genética , Doenças Transmissíveis/genética , Humanos , Doenças Metabólicas/genética , Neoplasias/genética , Doenças Neurodegenerativas/genética
7.
Front Cardiovasc Med ; 8: 733985, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34692785

RESUMO

Atherosclerosis, a complex chronic inflammatory disease, involves multiple alterations of diverse cells, including endothelial cells (ECs), vascular smooth muscle cells (VSMCs), monocytes, macrophages, dendritic cells (DCs), platelets, and even mesenchymal stem cells (MSCs). Globally, it is a common cause of morbidity as well as mortality. It leads to myocardial infarctions, stroke and disabling peripheral artery disease. Extracellular vesicles (EVs) are a heterogeneous group of cell-derived membranous structures that secreted by multiple cell types and play a central role in cell-to-cell communication by delivering various bioactive cargos, especially microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Emerging evidence demonstrated that miRNAs and lncRNAs in EVs are tightly associated with the initiation and development of atherosclerosis. In this review, we will outline and compile the cumulative roles of miRNAs and lncRNAs encapsulated in EVs derived from diverse cells in the progression of atherosclerosis. We also discuss intercellular communications via EVs. In addition, we focused on clinical applications and evaluation of miRNAs and lncRNAs in EVs as potential diagnostic biomarkers and therapeutic targets for atherosclerosis.

8.
Aging Dis ; 12(5): 1323-1336, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34341711

RESUMO

Vascular aging is defined as organic and functional changes in blood vessels, in which decline in autophagy levels, DNA damage, MicroRNA (miRNA), oxidative stress, sirtuin, and apoptosis signal-regulated kinase 1 (ASK1) are integral thereto. With regard to vascular morphology, the increase in arterial stiffness, atherosclerosis, vascular calcification and high amyloid beta levels are closely related to vascular aging. Further closely related thereto, at the cellular level, is the aging of vascular endothelial cells (ECs) and vascular smooth muscle cells (VSMCs). Vascular aging seriously affects the health, economy and life of patients, but can be delayed by SGLT2 inhibitors through the improvement of vascular function. In the present article, a review is conducted of recent domestic and international progress in research on SGLT2 inhibitors,vascular aging and diseases related thereto, thereby providing theoretical support and guidance for further revealing the relationship between SGLT2 inhibitors and diseases related to vascular aging.

9.
Aging Med (Milton) ; 3(3): 178-187, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33103038

RESUMO

OBJECTIVE: Cardiovascular diseases and vascular aging are common in patients with diabetes. High glucose is a major cause of vascular aging and cardiovascular diseases. Premature senescence of vascular smooth muscle cells (VSMCs) is one of the main contributors to vascular aging. Adiponectin has been demonstrated to have an anti-aging effect. The present study explored the mechanisms by which adiponectin protects VSMCs against high-glucose-induced senescence. METHODS: Senescence-associated ß-galactosidase (SA-ß-gal) staining was used to detect senescence cells. Western blot was used for measuring protein levels. Flow cytometry was carried out to detect the cell cycle and telomeric repeat amplification protocol (TRAP)-polymerase chain reaction (PCR) silver staining was selected to measure the telomerase activity. RESULTS: Premature senescence of VSMCs was induced by high glucose (30 mM) in a time-dependent manner, which was verified by an increased number of senescence cells, p21 and p53 expression, as well as the decreased proliferation index. High glucose reduced telomerase activity of VSMCs via inhibition of the AMPK/TSC2/mTOR/S6K1 pathway and activation of the PI3K/Akt/mTOR/S6K1 pathway, while adiponectin treatment significantly increased telomerase activity of VSMCs through activation of AMPK/TSC2/mTOR/S6K1 signaling and inhibition of PI3K/Akt/mTOR/S6K1 signaling. CONCLUSION: Adiponectin attenuated the high-glucose-induced premature senescence of VSMCs via increasing telomerase activity of VSMCs, which was achieved by activation of AMPK/TSC2/mTOR/S6K1 signaling and inhibition of PI3K/Akt/mTOR/S6K1 signaling.

10.
Ageing Res Rev ; 64: 101176, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32971257

RESUMO

The aging of the vasculature plays a crucial role in the pathological progression of various vascular aging-related diseases. As endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) are essential parts in the inner and medial layers of vessel wall, respectively, the structural and functional alterations of ECs and VSMCs are the major causes of vascular aging. Milk fat globule-epidermal growth factor 8 (MFG-E8) is a multifunctional glycoprotein which exerts a regulatory role in the intercellular interactions involved in a variety of biological and pathological processes. Emerging evidence suggests that MFG-E8 is a novel and outstanding modulator for vascular aging via targeting at ECs and VSMCs. In this review, we will summarise the cumulative roles and mechanisms of MFG-E8 in vascular aging and vascular aging-related diseases with special emphasis on the functions of ECs and VSMCs. In addition, we also aim to focus on the promising diagnostic function as a biomarker and the potential therapeutic application of MFG-E8 in vascular aging and the clinical evaluation of vascular aging-related diseases.


Assuntos
Células Endoteliais , Fator VIII , Envelhecimento , Antígenos de Superfície , Glicolipídeos , Glicoproteínas , Humanos , Gotículas Lipídicas , Proteínas do Leite
11.
Ann N Y Acad Sci ; 1474(1): 61-72, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32483833

RESUMO

Long noncoding RNAs (lncRNAs) have been investigated as novel regulatory molecules involved in diverse biological processes. Our previous study demonstrated that lncRNA-ES3 is associated with the high glucose-induced calcification/senescence of human aortic vascular smooth muscle cells (HA-VSMCs). However, the mechanism of lncRNA-ES3 in vascular calcification/aging remained largely unknown. Here, we report that the expression of basic helix-loop-helix family member e40 (Bhlhe40) was decreased significantly in HA-VSMCs treated with high glucose, whereas the expression of basic leucine zipper transcription factor (BATF) was increased. Overexpression of Bhlhe40 and inhibition of BATF alleviated calcification/senescence of HA-VSMCs, as confirmed by Alizarin Red S staining and the presence of senescence-associated ß-galactosidase-positive cells. Moreover, we identified that Bhlhe40 regulates lncRNA-ES3 in HA-VSMCs by binding to the promoter region of the lncRNA-ES3 gene (LINC00458). Upregulation or inhibition of lncRNA-ES3 expression significantly promoted or reduced calcification/senescence of HA-VSMCs, respectively. Additionally, we identified that lncRNA-ES3 functions in this process by suppressing the expression of miR-95-5p, miR-6776-5p, miR-3620-5p, and miR-4747-5p. The results demonstrate that lncRNA-ES3 triggers gene silencing of multiple miRNAs by binding to Bhlhe40, leading to calcification/senescence of VSMCs. Our findings suggest that pharmacological interventions targeting lncRNA-ES3 may be therapeutically beneficial in ameliorating vascular calcification/aging.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Inativação Gênica/fisiologia , Proteínas de Homeodomínio/metabolismo , MicroRNAs/genética , Músculo Liso Vascular/patologia , RNA Longo não Codificante/genética , Calcificação Vascular/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Linhagem Celular , Senescência Celular , Glucose/metabolismo , Humanos , Regiões Promotoras Genéticas/genética , Interferência de RNA , RNA Longo não Codificante/antagonistas & inibidores , RNA Interferente Pequeno/genética , Calcificação Vascular/patologia , beta-Galactosidase/metabolismo
12.
Aging Dis ; 11(1): 164-178, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32010490

RESUMO

Aging is a progressive loss of physiological integrity and functionality process which increases susceptibility and mortality to diseases. Vascular aging is a specific type of organic aging. The structure and function changes of endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) are the main cause of vascular aging, which could influence the threshold, process, and severity of vascular related diseases. Accumulating evidences demonstrate that exosomes serve as novel intercellular information communicator between cell to cell by delivering variety biologically active cargos, especially exosomal non-coding RNAs (ncRNAs), which are associated with most of aging-related biological and functional disorders. In this review, we will summerize the emerging roles and mechanisms of exosomal ncRNAs in vascular aging and vascular aging related diseases, focusing on the role of exosomal miRNAs and lncRNAs in regulating the functions of ECs and VSMCs. Moreover, the relationship between the ECs and VSMCs linked by exosomes, the potential diagnostic and therapeutic application of exosomes in vascular aging and the clinical evaluation and treatment of vascular aging and vascular aging related diseases will also be discussed.

13.
Cardiology ; 141(4): 226-232, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30852569

RESUMO

BACKGROUND: Postinfarction ventricular septal rupture (PI-VSR) is a rare but devastating complication of acute myocardial infarction (AMI). Risk stratification in the acute phase is crucial for decision-making, and this study analyzed the risk factors for early mortality and the effects of various management options on the outcome of PI-VSR patients in the era of percutaneous intervention. METHODS: A total of 96 patients with PI-VSR were identified and divided into an acute-phase survivor group (n = 46, survived ≥2 weeks after admission) and a nonsurvivor group (n = 50, died within 2 weeks after admission). Percutaneous closure was considered in acute-phase survivors. Patients were followed up for a mean 47 (quartiles 15-71) months by clinical visit or telephone interview. RESULTS: The overall acute-phase (i.e., < 2 weeks after the diagnosis of PI-VSR) mortality rate was 52%. Female sex and Killip Class III-IV at admission were associated with an increased risk of acute-phase death. Of the 46 patients who survived ≥2 weeks, 20 underwent interventional occlusion and the procedure was successful in 19. Percutaneous closure in the acute-phase survivor group improved the immediate (21% in-hospital mortality rate) and long-term (53% mortality) outcomes. CONCLUSIONS: Patients with PI-VSR are at a high risk of acute-phase mortality. Female sex and severe cardiac dysfunction at admission are linked with a high rate of acute-phase deaths. Percutaneous closure in acute-phase survivors results in favorable short- and long-term benefits for PI-VSR patients.


Assuntos
Cateterismo Cardíaco/métodos , Procedimentos Cirúrgicos Cardíacos/métodos , Infarto do Miocárdio/complicações , Ruptura do Septo Ventricular/cirurgia , Idoso , China , Feminino , Mortalidade Hospitalar , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/mortalidade , Estudos Retrospectivos , Medição de Risco , Fatores de Risco , Dispositivo para Oclusão Septal , Ruptura do Septo Ventricular/etiologia , Ruptura do Septo Ventricular/mortalidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...