Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38731544

RESUMO

Berberis vulgaris (L.) has remarkable ethnopharmacological properties and is widely used in traditional medicine. The present study investigated B. vulgaris stem bark (Berberidis cortex) by extraction with 50% ethanol. The main secondary metabolites were quantified, resulting in a polyphenols content of 17.6780 ± 3.9320 mg Eq tannic acid/100 g extract, phenolic acids amount of 3.3886 ± 0.3481 mg Eq chlorogenic acid/100 g extract and 78.95 µg/g berberine. The dried hydro-ethanolic extract (BVE) was thoroughly analyzed using Ultra-High-Performance Liquid Chromatography coupled with High-Resolution Mass Spectrometry (UHPLC-HRMS/MS) and HPLC, and 40 bioactive phenolic constituents were identified. Then, the antioxidant potential of BVE was evaluated using three methods. Our results could explain the protective effects of Berberidis cortex EC50FRAP = 0.1398 mg/mL, IC50ABTS = 0.0442 mg/mL, IC50DPPH = 0.2610 mg/mL compared to ascorbic acid (IC50 = 0.0165 mg/mL). Next, the acute toxicity and teratogenicity of BVE and berberine-berberine sulfate hydrate (BS)-investigated on Daphnia sp. revealed significant BS toxicity after 24 h, while BVE revealed considerable toxicity after 48 h and induced embryonic developmental delays. Finally, the anticancer effects of BVE and BS were evaluated in different tumor cell lines after 24 and 48 h of treatments. The MTS assay evidenced dose- and time-dependent antiproliferative activity, which was higher for BS than BVE. The strongest diminution of tumor cell viability was recorded in the breast (MDA-MB-231), colon (LoVo) cancer, and OSCC (PE/CA-PJ49) cell lines after 48 h of exposure (IC50 < 100 µg/mL). However, no cytotoxicity was reported in the normal epithelial cells (HUVEC) and hepatocellular carcinoma (HT-29) cell lines. Extensive data analysis supports our results, showing a significant correlation between the BVE concentration, phenolic compounds content, antioxidant activity, exposure time, and the viability rate of various normal cells and cancer cell lines.


Assuntos
Antioxidantes , Berberis , Casca de Planta , Extratos Vegetais , Berberis/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antioxidantes/farmacologia , Antioxidantes/química , Casca de Planta/química , Humanos , Linhagem Celular Tumoral , Animais , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Sobrevivência Celular/efeitos dos fármacos , Fenóis/farmacologia , Fenóis/química , Cromatografia Líquida de Alta Pressão , Caules de Planta/química
2.
Plants (Basel) ; 13(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38732407

RESUMO

The present study focuses on the chemical characterization of a dry extract obtained from the species Ajuga chamaepitys (L.) Schreb, evaluating its antioxidant properties, toxicity, and in silico profile. Quantitative analysis of the dry extract revealed a notable amount of phytochemical compounds: 59.932 ± 21.167 mg rutin equivalents (mg REs)/g dry weight, 45.864 ± 4.434 mg chlorogenic acid equivalents (mg ChAEs)/g dry weight and, respectively, 83.307 ± 3.989 mg tannic acid equivalents (TAEs)/g dry weight. By UHPLC-HRMS/MS, the following were quantified as major compounds: caffeic acid (3253.8 µg/g extract) and kaempherol (3041.5 µg/g extract); more than 11 types of polyphenolic compounds were quantified (genistin 730.2 µg/g extract, naringenin 395 µg/g extract, apigenin 325.7 µg/g extract, galangin 283.3 µg/g extract, ferulic acid 254.3 µg/g extract, p-coumaric acid 198.2 µg/g extract, rutin 110.6 µg/g extract, chrysin 90.22 µg/g extract, syringic acid 84.2 µg/g extract, pinocembrin 32.7 µg/g extract, ellagic acid 18.2 µg/g extract). The antioxidant activity was in accordance with the amount of phytochemical compounds: IC50DPPH = 483.6 ± 41.4 µg/mL, IC50ABTS•+ = 127.4 ± 20.2 µg/mL, and EC50FRAP = 491.6 ± 2 µg/mL. On the larvae of Artemia sp., it was found that the extract has a low cytotoxic action. In silico studies have highlighted the possibility of inhibiting the activity of protein kinases CDK5 and GSK-3b for apigenin, galangin, and kaempferol, with possible utility for treating neurodegenerative pathologies and neuropathic pain. Further studies are warranted to confirm the predicted molecular mechanisms of action and to further investigate the therapeutic potential in animal models of neurological disorders.

3.
Pharmaceutics ; 16(2)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38399299

RESUMO

Capsicum annuum (L.) is one of the essential spices most frequently used in our daily routine and has remarkable ethnobotanical and pharmacological properties. Its fruits are rich in vitamins, minerals, carotenoids, and numerous other phenolic metabolites with a well-known antioxidant activity. Regular consumption of chili fruits may have a positive influence on human health. Therefore, we investigated a commercially available chili fruit powder in the present study, extracting it with 50% ethanol. The dried hydro-ethanolic extract (CAE) was thoroughly analyzed using ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-HRMS/MS), and 79 bioactive phenolic constituents were identified. Then, we quantified the main phenolic compounds and found a polyphenol content of 4.725 ± 1.361 mg Eq tannic acid/100 g extract and a flavonoid amount of 1.154 ± 0.044 mg Eq rutin/100 g extract. Phenolic secondary metabolites are known for their dual redox behavior as antioxidants/pro-oxidants, underlying their numerous benefits in health and disease. Thus, the antioxidant potential of CAE was evaluated using three methods; our results could explain the protective effects of chili fruits: IC50DPPH = 1.669 mg/mL, IC50ABTS = 0.200 mg/mL, and EC50FRAP = 0.561 mg/mL. The pro-oxidant potential of phenolic compounds could be a basis for CAE cytotoxicity, investigated in vitro on tumor cell lines and in vivo on Daphnia sp. Results demonstrated the dose- and time-dependent CAE's cytotoxic activity; the highest antiproliferative activity was recorded on colon (LoVo) and breast (MDA-MB-231) cancer cell lines after 48 h of exposure (IC50 values < 200 µg/mL). In vivo testing on Daphnia sp. reported a potent CAE cytotoxicity after 48 h and embryonic developmental delays. Extensive data analyses support our results, showing a significant correlation between the CAE's concentration, phenolic compound content, antioxidant activity, exposure time, and the viability rate of different tested cell lines.

4.
Plants (Basel) ; 12(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36679051

RESUMO

Diseases such as cancer, neurological pathologies and chronic pain represent currently unmet needs. The existing pharmacotherapeutic options available for treating these conditions are limited by lack of efficiency and/or side effects. Transient receptor potential vanilloid 1 ion channel emerged as an attractive therapeutic target for developing new analgesic, anti-cancer and antiepileptic agents. Furthermore, various natural ingredients were shown to have affinity for this receptor. The aim of this narrative review was to summarize the diverse natural scaffolds of TRPV1 modulators based on their agonistic/antagonistic properties and to analyze the structure-activity relationships between the ligands and molecular targets based on the results of the existing molecular docking, mutagenesis and in vitro studies. We present here an exhaustive collection of TRPV1 modulators grouped by relevant chemical features: vanilloids, guaiacols, phenols, alkylbenzenes, monoterpenes, sesquiterpenoids, alkaloids, etc. The information herein is useful for understanding the key structural elements mediating the interaction with TRPV1 and how their structural variation impacts the interaction between the ligand and receptor. We hope this data will contribute to the design of novel effective and safe TRPV1 modulators, to help overcome the lack of effective therapeutic agents against pathologies with high morbidity and mortality.

5.
Plants (Basel) ; 11(13)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35807632

RESUMO

Oxidative stress is among the major triggers for many important human functional disorders, which often lead to various metabolic or tissue diseases. The aim of the study is to obtain five standardized vegetal extracts (Cynarae extractum-CE, Rosmarini extractum-RE, Taraxaci extractum-TE, Cichorii extractum-CHE, and Agrimoniae extractum-AE) that contain active principles with an essential role in protecting liver cells against free radicals and quantify their antioxidant actions. The compounds of therapeutic interest from the analyzed extracts were identified and quantified using the UHPLC-HRMS/MS technique. Thus, the resulting identified compounds were 28 compounds in CE, 48 compounds in RE, 39 compounds in TE, 43 compounds in CHE, and 31 compounds in AE. These compounds belong to the class of flavonoids, isoflavones, phenolic acids and dicarboxylic acids, depsides, diterpenes, triterpenes, sesquiterpenes, proanthocyanidins, or coumarin derivatives. From the major polyphenolic compounds quantified in all the extracts analyzed by UHPLC-HRMS/MS, considerable amounts have been found for chlorogenic acid (619.8 µg/g extract for TE-2032.4 µg/g extract for AE), rutoside (105.1 µg/g extract for RE-1724.7 µg/g extract for AE), kaempferol (243 µg/g extract for CHE-2028.4 µg/g extract for CE), and for naringenin (383 µg/g extract for CHE-1375.8 µg/g extract for AE). The quantitative chemical analysis showed the highest content of total phenolic acids for AE (24.1528 ± 1.1936 g chlorogenic acid/100 g dry extract), the highest concentration of flavones for RE (6.0847 ± 0.3025 g rutoside/100 g dry extract), and the richest extract in total polyphenols with 31.7017 ± 1.2211 g tannic acid equivalent/100 g dry extract for AE. Several methods (DPPH, ABTS, and FRAP) have been used to determine the in vitro total antioxidant activity of the extracts to evaluate their free radical scavenging ability, influenced by the identified compounds. As a result, the correlation between the content of the polyphenolic compounds and the antioxidant effect of the extracts has been demonstrated. Statistically significant differences were found when comparing the antiradical capacity within the study groups. Although all the analyzed extracts showed good IC50 values, which may explain their antihepatotoxic effects, the highest antioxidant activity was obtained for Agrimoniae extractum (IC50ABTS = 0.0147 mg/mL) and the lowest antioxidant activity was obtained for Cynarae extractum (IC50ABTS = 0.1588 mg/mL). Furthermore, the hepatoprotective potential was evaluated in silico by predicting the interactions between the determined phytochemicals and key molecular targets relevant to liver disease pathophysiology. Finally, the evaluation of the pharmacognostic and phytochemical properties of the studied extracts validates their use as adjuvants in phytotherapy, as they reduce oxidative stress and toxin accumulation and thus exert a hepatoprotective effect at the cellular level.

6.
Mar Drugs ; 20(1)2022 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-35049900

RESUMO

Nowadays, the use of marine by-products as precursor materials has gained great interest in the extraction and production of chemical compounds with suitable properties and possible pharmaceutical applications. The present paper presents the development of a new immediate release tablet containing calcium lactate obtained from Black Sea mussel shells. Compared with other calcium salts, calcium lactate has good solubility and bioavailability. In the pharmaceutical preparations, calcium lactate was extensively utilized as a calcium source for preventing and treating calcium deficiencies. The physical and chemical characteristics of synthesized calcium lactate were evaluated using Fourier Transform Infrared Spectroscopy, X-ray diffraction analysis and thermal analysis. Further, the various pharmacotechnical properties of the calcium lactate obtained from mussel shells were determined in comparison with an industrial used direct compressible Calcium lactate DC (PURACAL®). The obtained results suggest that mussel shell by-products are suitable for the development of chemical compounds with potential applications in the pharmaceutical domain.


Assuntos
Bivalves , Compostos de Cálcio/química , Lactatos/química , Exoesqueleto , Animais , Organismos Aquáticos , Sistemas de Liberação de Medicamentos , Espectroscopia de Infravermelho com Transformada de Fourier , Comprimidos , Difração de Raios X
7.
Food Chem Toxicol ; 143: 111558, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32640331

RESUMO

Prevention and treatment of non-communicable diseases (NCDs), including cardiovascular disease, diabetes, obesity, cancer, Alzheimer's and Parkinson's disease, arthritis, non-alcoholic fatty liver disease and various infectious diseases; lately most notably COVID-19 have been in the front line of research worldwide. Although targeting different organs, these pathologies have common biochemical impairments - redox disparity and, prominently, dysregulation of the inflammatory pathways. Research data have shown that diet components like polyphenols, poly-unsaturated fatty acids (PUFAs), fibres as well as lifestyle (fasting, physical exercise) are important factors influencing signalling pathways with a significant potential to improve metabolic homeostasis and immune cells' functions. In the present manuscript we have reviewed scientific data from recent publications regarding the beneficial cellular and molecular effects induced by dietary plant products, mainly polyphenolic compounds and PUFAs, and summarize the clinical outcomes expected from these types of interventions, in a search for effective long-term approaches to improve the immune system response.


Assuntos
Dieta com Restrição de Carboidratos , Ácidos Graxos Insaturados/efeitos adversos , Inflamação/etiologia , Doenças não Transmissíveis , Polifenóis/efeitos adversos , Animais , Dieta Mediterrânea , Fibras na Dieta/administração & dosagem , Exercício Físico/fisiologia , Ácidos Graxos Insaturados/administração & dosagem , Humanos , Inflamação/epidemiologia , Inflamação/prevenção & controle , Doenças não Transmissíveis/epidemiologia , Polifenóis/uso terapêutico
8.
Mol Med Rep ; 20(6): 4749-4762, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31702817

RESUMO

Transposases are ubiquitous mobile genetic elements responsible for genome development, driving rearrangements, such as insertions, deletions and translocations. Across species evolution, some transposases are tamed by their host and are made part of complex cellular systems. The proliferation of retroviruses is also dependent on transposase related enzymes termed integrases. Recombination­activating gene protein (RAG)1 and metnase are just two examples of transposase domestication and together with retroviral integrases (INs), they belong to the DDE polynucleotidyl transferases superfamily. They share mechanistic and structural features linked to the RNase H­like fold, harboring a DDE(D) metal dependent catalytic motif. Recent antiretroviral compounds target the catalytic domain of integrase, but they also have the potential of inhibiting other related enzymes. In this review, we report the activity of different classes of integrase inhibitors on various DDE transposases. Computational simulations are useful to predict the extent of off­target activity and have been employed to study the interactions between RAG1 recombinase and compounds from three different pharmacologic classes. We demonstrate that strand­transfer inhibitors display a higher affinity towards the RAG1 RNase H domain, as suggested by experimental data compared to allosteric inhibitors. While interference with RAG1 and 2 recombination is associated with a negative impact on immune function, the inhibition of metnase or HTLV­1 integrase opens the way for the development of novel therapies for refractory cancers.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Diclorodifenil Dicloroetileno , HIV-1/genética , Proteínas de Homeodomínio/metabolismo , Inibidores de Integrase/farmacologia , Proteínas Nucleares/metabolismo , Recombinação Genética/genética , Transposases/efeitos dos fármacos , Domínio Catalítico , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , HIV-1/metabolismo , Compostos Heterocíclicos com 3 Anéis , Histona-Lisina N-Metiltransferase , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/genética , Inibidores de Integrase/química , Simulação de Acoplamento Molecular , Proteínas Nucleares/química , Proteínas Nucleares/genética , Oxazinas , Piperazinas , Conformação Proteica , Piridonas , Retroviridae/genética , Ribonuclease H do Vírus da Imunodeficiência Humana/metabolismo
9.
World Acad Sci J ; 1(4): 157-164, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32346674

RESUMO

Research over the past years has indicated that chronic human exposure to very low doses of various chemical species in mixtures and administered via different routes (percutaneous, orally, etc.) should be the main focus of new biochemical and toxicological studies. Humans have daily contact with various chemicals, such as food additives, pesticides from fruits/vegetables, antibiotics (and other veterinary drugs) from meat, different types of preservatives from cosmetics, to name a few. Simultaneous exposure to this wide array of chemicals does not produce immediate effects, but summative effect/s over time that may be clinically manifested several years thereafter. Classical animal studies designed to test the toxic outcome of a single chemical are not suitable to assess, and then extrapolate to humans, the effects of a whole mixture of chemicals. Testing the aftermath of a combination of chemicals, at low doses, around or below the no observed adverse effect is stressed by many toxicologists. Thus, there is a need to reformulate the design of biochemical and toxicological studies in order to perform real-life risk simulation. This review discuss the potential use of computational methods as a complementary tool for in vitro and in vivo toxicity tests with a high predictive potential that could contribute to reduce animal testing, cost and time, when assessing the effects of chemical combinations. This review focused on the use of these methods to predict the potential endocrine disrupting activity of a mixture of chemicals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...