Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 15(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37892554

RESUMO

In this Editorial, we comment on a series of recent articles featured in the Special Issue "Emerging Benefits of Vitamin B3 Derivatives on Aging, Health and Disease: From Basic Research to Translational Applications" in Nutrients [...].


Assuntos
NAD , Niacina , Niacinamida
2.
Nutrients ; 15(14)2023 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-37513501

RESUMO

This study investigated the effect of nicotinamide (NAM) supplementation on the development of brain inflammation and microglial activation in a mouse model of type 1 diabetes mellitus. C57BL/6J male mice, which were made diabetic with five consecutive, low-dose (55 mg/kg i.p.) streptozotocin (STZ) injections. Diabetic mice were randomly distributed in different experimental groups and challenged to different doses of NAM (untreated, NAM low-dose, LD, 0.1%; NAM high-dose, HD, 0.25%) for 25 days. A control, non-diabetic group of mice was used as a reference. The NAD+ content was increased in the brains of NAM-treated mice compared with untreated diabetic mice (NAM LD: 3-fold; NAM HD: 3-fold, p-value < 0.05). Immunohistochemical staining revealed that markers of inflammation (TNFα: NAM LD: -35%; NAM HD: -46%; p-value < 0.05) and microglial activation (IBA-1: NAM LD: -29%; NAM HD: -50%; p-value < 0.05; BDKRB1: NAM LD: -36%; NAM HD: -37%; p-value < 0.05) in brains from NAM-treated diabetic mice were significantly decreased compared with non-treated T1D mice. This finding was accompanied by a concomitant alleviation of nuclear NFκB (p65) signaling in treated diabetic mice (NFκB (p65): NAM LD: -38%; NAM HD: -53%, p-value < 0.05). Notably, the acetylated form of the nuclear NFκB (p65) was significantly decreased in the brains of NAM-treated, diabetic mice (NAM LD: -48%; NAM HD: -63%, p-value < 0.05) and inversely correlated with NAD+ content (r = -0.50, p-value = 0.03), suggesting increased activity of NAD+-dependent deacetylases in the brains of treated mice. Thus, dietary NAM supplementation in diabetic T1D mice prevented brain inflammation via NAD+-dependent deacetylation mechanisms, suggesting an increased action of sirtuin signaling.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Encefalite , Camundongos , Masculino , Animais , Niacinamida/farmacologia , NAD , Camundongos Endogâmicos C57BL , Encefalite/prevenção & controle
3.
Nutrients ; 15(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37447318

RESUMO

The oxidized form of nicotinamide adenine dinucleotide (NAD+) is a critical metabolite for living cells. NAD+ may act either as a cofactor for many cellular reactions as well as a coenzyme for different NAD+-consuming enzymes involved in the physiological homeostasis of different organs and systems. In mammals, NAD+ is synthesized from either tryptophan or other vitamin B3 intermediates that act as NAD+ precursors. Recent research suggests that NAD+ precursors play a crucial role in maintaining the integrity of the gut barrier. Indeed, its deficiency has been associated with enhanced gut inflammation and leakage, and dysbiosis. Conversely, NAD+-increasing therapies may confer protection against intestinal inflammation in experimental conditions and human patients, with accumulating evidence indicating that such favorable effects could be, at least in part, mediated by concomitant changes in the composition of intestinal microbiota. However, the mechanisms by which NAD+-based treatments affect the microbiota are still poorly understood. In this context, we have focused specifically on the impact of NAD+ deficiency on intestinal inflammation and dysbiosis in animal and human models. We have further explored the relationship between NAD+ and improved host intestinal metabolism and immunity and the composition of microbiota in vivo. Overall, this comprehensive review aims to provide a new perspective on the effect of NAD+-increasing strategies on host intestinal physiology.


Assuntos
Microbioma Gastrointestinal , Animais , Humanos , NAD/metabolismo , Disbiose , Niacinamida/metabolismo , Inflamação , Mamíferos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...