Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 29(18): 5429-5444, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37317051

RESUMO

Global climate models predict that the frequency and intensity of precipitation events will increase in many regions across the world. However, the biosphere-climate feedback to elevated precipitation (eP) remains elusive. Here, we report a study on one of the longest field experiments assessing the effects of eP, alone or in combination with other climate change drivers such as elevated CO2 (eCO2 ), warming and nitrogen deposition. Soil total carbon (C) decreased after a decade of eP treatment, while plant root production decreased after 2 years. To explain this asynchrony, we found that the relative abundances of fungal genes associated with chitin and protein degradation increased and were positively correlated with bacteriophage genes, suggesting a potential viral shunt in C degradation. In addition, eP increased the relative abundances of microbial stress tolerance genes, which are essential for coping with environmental stressors. Microbial responses to eP were phylogenetically conserved. The effects of eP on soil total C, root production, and microbes were interactively affected by eCO2 . Collectively, we demonstrate that long-term eP induces soil C loss, owing to changes in microbial community composition, functional traits, root production, and soil moisture. Our study unveils an important, previously unknown biosphere-climate feedback in Mediterranean-type water-limited ecosystems, namely how eP induces soil C loss via microbe-plant-soil interplay.


Assuntos
Pradaria , Microbiota , Carbono , Mudança Climática , Nitrogênio
2.
Glob Chang Biol ; 29(7): 1839-1853, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36537009

RESUMO

Global change may have profound effects on soil nitrogen (N) cycling that can induce positive feedback to climate change through increased nitrous oxide (N2 O) emissions mediated by nitrification and denitrification. We conducted a meta-analysis of the effects of elevated CO2 on nitrification and denitrification based on 879 observations from 58 publications and 46 independent elevated CO2 experiments in terrestrial ecosystems. We investigated the effects of elevated CO2 alone or combined with elevated temperature, increased precipitation, drought, and N addition. We assessed the response to elevated CO2 of gross and potential nitrification, potential denitrification, and abundances of related functional genes (archaeal amoA, bacterial amoA, nirK, nirS, and nosZ). Elevated CO2 increased potential nitrification (+28%) and the abundance of bacterial amoA functional gene (+62%) in cropland ecosystems. Elevated CO2 increased potential denitrification when combined with N addition and higher precipitation (+116%). Elevated CO2 also increased the abundance of nirK (+25%) and nirS (+27%) functional genes in terrestrial ecosystems and of nosZ (+32%) functional gene in cropland ecosystems. The increase in the abundance of nosZ under elevated CO2 was larger at elevated temperature and high N (+62%). Four out of 14 two-way interactions tested between elevated CO2 and elevated temperature, elevated CO2 and increased precipitation, and elevated CO2 and N addition were marginally significant and mostly synergistic. The effects of elevated CO2 on potential nitrification and abundances of bacterial amoA and nirS functional genes increased with mean annual temperature and mean annual precipitation. Our meta-analysis thus suggests that warming and increased precipitation in large areas of the world could reinforce positive responses of nitrification and denitrification to elevated CO2 and urges the need for more investigations in the tropical zone and on interactive effects among multiple global change factors, as we may largely underestimate the effects of global change on soil N2 O emissions.


Assuntos
Desnitrificação , Nitrificação , Ecossistema , Dióxido de Carbono , Microbiologia do Solo , Solo , Bactérias , Óxido Nitroso/análise
4.
Microbiome ; 10(1): 112, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35902889

RESUMO

BACKGROUND: Anthropogenic activities have increased the inputs of atmospheric reactive nitrogen (N) into terrestrial ecosystems, affecting soil carbon stability and microbial communities. Previous studies have primarily examined the effects of nitrogen deposition on microbial taxonomy, enzymatic activities, and functional processes. Here, we examined various functional traits of soil microbial communities and how these traits are interrelated in a Mediterranean-type grassland administrated with 14 years of 7 g m-2 year-1 of N amendment, based on estimated atmospheric N deposition in areas within California, USA, by the end of the twenty-first century. RESULTS: Soil microbial communities were significantly altered by N deposition. Consistent with higher aboveground plant biomass and litter, fast-growing bacteria, assessed by abundance-weighted average rRNA operon copy number, were favored in N deposited soils. The relative abundances of genes associated with labile carbon (C) degradation (e.g., amyA and cda) were also increased. In contrast, the relative abundances of functional genes associated with the degradation of more recalcitrant C (e.g., mannanase and chitinase) were either unchanged or decreased. Compared with the ambient control, N deposition significantly reduced network complexity, such as average degree and connectedness. The network for N deposited samples contained only genes associated with C degradation, suggesting that C degradation genes became more intensely connected under N deposition. CONCLUSIONS: We propose a conceptual model to summarize the mechanisms of how changes in above- and belowground ecosystems by long-term N deposition collectively lead to more soil C accumulation. Video Abstract.


Assuntos
Microbiota , Solo , Carbono , Ecossistema , Microbiota/genética , Nitrogênio/metabolismo , Microbiologia do Solo
5.
NPJ Biofilms Microbiomes ; 7(1): 17, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33558544

RESUMO

Climate warming is known to impact ecosystem composition and functioning. However, it remains largely unclear how soil microbial communities respond to long-term, moderate warming. In this study, we used Illumina sequencing and microarrays (GeoChip 5.0) to analyze taxonomic and functional gene compositions of the soil microbial community after 14 years of warming (at 0.8-1.0 °C for 10 years and then 1.5-2.0 °C for 4 years) in a Californian grassland. Long-term warming had no detectable effect on the taxonomic composition of soil bacterial community, nor on any plant or abiotic soil variables. In contrast, functional gene compositions differed between warming and control for bacterial, archaeal, and fungal communities. Functional genes associated with labile carbon (C) degradation increased in relative abundance in the warming treatment, whereas those associated with recalcitrant C degradation decreased. A number of functional genes associated with nitrogen (N) cycling (e.g., denitrifying genes encoding nitrate-, nitrite-, and nitrous oxidereductases) decreased, whereas nifH gene encoding nitrogenase increased in the warming treatment. These results suggest that microbial functional potentials are more sensitive to long-term moderate warming than the taxonomic composition of microbial community.


Assuntos
Archaea/genética , Bactérias/classificação , Fungos/genética , Análise de Sequência de RNA/métodos , Bactérias/genética , Bactérias/isolamento & purificação , Carbono/metabolismo , Perfilação da Expressão Gênica , Genes Arqueais , Genes Bacterianos , Genes Fúngicos , Aquecimento Global , Pradaria , Sequenciamento de Nucleotídeos em Larga Escala , Nitrogênio/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Filogenia , RNA Ribossômico 16S/genética , Microbiologia do Solo
6.
Glob Chang Biol ; 26(2): 431-442, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31562826

RESUMO

Fire is a crucial event regulating the structure and functioning of many ecosystems. Yet few studies have focused on how fire affects taxonomic and functional diversities of soil microbial communities, along with changes in plant communities and soil carbon (C) and nitrogen (N) dynamics. Here, we analyze these effects in a grassland ecosystem 9 months after an experimental fire at the Jasper Ridge Global Change Experiment site in California, USA. Fire altered soil microbial communities considerably, with community assembly process analysis showing that environmental selection pressure was higher in burned sites. However, a small subset of highly connected taxa was able to withstand the disturbance. In addition, fire decreased the relative abundances of most functional genes associated with C degradation and N cycling, implicating a slowdown of microbial processes linked to soil C and N dynamics. In contrast, fire stimulated above- and belowground plant growth, likely enhancing plant-microbe competition for soil inorganic N, which was reduced by a factor of about 2. To synthesize those findings, we performed structural equation modeling, which showed that plants but not microbial communities were responsible for significantly higher soil respiration rates in burned sites. Together, our results demonstrate that fire 'reboots' the grassland ecosystem by differentially regulating plant and soil microbial communities, leading to significant changes in soil C and N dynamics.


Assuntos
Microbiota , Solo , California , Ecossistema , Pradaria , Microbiologia do Solo
7.
Sci Total Environ ; 652: 1474-1481, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30586832

RESUMO

The continuously increasing concentration of atmospheric CO2 has considerably altered ecosystem functioning. However, few studies have examined the long-term (i.e. over a decade) effect of elevated CO2 on soil microbial communities. Using 16S rRNA gene amplicons and a GeoChip microarray, we investigated soil microbial communities from a Californian annual grassland after 14 years of experimentally elevated CO2 (275 ppm higher than ambient). Both taxonomic and functional gene compositions of the soil microbial community were modified by elevated CO2. There was decrease in relative abundance for taxa with higher ribosomal RNA operon (rrn) copy number under elevated CO2, which is a functional trait that responds positively to resource availability in culture. In contrast, taxa with lower rrn copy number were increased by elevated CO2. As a consequence, the abundance-weighted average rrn copy number of significantly changed OTUs declined from 2.27 at ambient CO2 to 2.01 at elevated CO2. The nitrogen (N) fixation gene nifH and the ammonium-oxidizing gene amoA significantly decreased under elevated CO2 by 12.6% and 6.1%, respectively. Concomitantly, nitrifying enzyme activity decreased by 48.3% under elevated CO2, albeit this change was not significant. There was also a substantial but insignificant decrease in available soil N, with both nitrate (NO3-) (-27.4%) and ammonium (NH4+) (-15.4%) declining. Further, a large number of microbial genes related to carbon (C) degradation were also affected by elevated CO2, whereas those related to C fixation remained largely unchanged. The overall changes in microbial communities and soil N pools induced by long-term elevated CO2 suggest constrained microbial N decomposition, thereby slowing the potential maximum growth rate of the microbial community.


Assuntos
Dióxido de Carbono/análise , Monitoramento Ambiental/métodos , Pradaria , Microbiota , Fixação de Nitrogênio , Poaceae/efeitos dos fármacos , Microbiologia do Solo , California , Dióxido de Carbono/toxicidade , Mudança Climática , Clima Desértico , Microbiota/genética , Fixação de Nitrogênio/genética , Poaceae/crescimento & desenvolvimento , Poaceae/metabolismo , Solo/química
8.
FEMS Microbiol Lett ; 364(9)2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28430942

RESUMO

Nitrogen (N) addition is known to affect soil microbial communities, but the interactive effects of N addition with other drivers of global change remain unclear. The impacts of multiple global changes on the structure of microbial communities may be mediated by specific microbial groups with different life-history strategies. Here, we investigated the combined effects of elevated CO2 and N addition on soil microbial communities using PLFA profiling in a short-term grassland mesocosm experiment. We also examined the linkages between the relative abundance of r- and K-strategist microorganisms and resistance of the microbial community structure to experimental treatments. N addition had a significant effect on microbial community structure, likely driven by concurrent increases in plant biomass and in soil labile C and N. In contrast, microbial community structure did not change under elevated CO2 or show significant CO2 × N interactions. Resistance of soil microbial community structure decreased with increasing fungal/bacterial ratio, but showed a positive relationship with the Gram-positive/Gram-negative bacterial ratio. Our findings suggest that the Gram-positive/Gram-negative bacteria ratio may be a useful indicator of microbial community resistance and that K-strategist abundance may play a role in the short-term stability of microbial communities under global change.


Assuntos
Dióxido de Carbono/análise , Pradaria , Consórcios Microbianos/efeitos dos fármacos , Nitrogênio/análise , Microbiologia do Solo , Bactérias/efeitos dos fármacos , Biodiversidade , Biomassa , Dactylis/efeitos dos fármacos , Ecossistema , Fungos/efeitos dos fármacos
9.
Front Microbiol ; 7: 628, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27242680

RESUMO

Soil microbial diversity is huge and a few grams of soil contain more bacterial taxa than there are bird species on Earth. This high diversity often makes predicting the responses of soil bacteria to environmental change intractable and restricts our capacity to predict the responses of soil functions to global change. Here, using a long-term field experiment in a California grassland, we studied the main and interactive effects of three global change factors (increased atmospheric CO2 concentration, precipitation and nitrogen addition, and all their factorial combinations, based on global change scenarios for central California) on the potential activity, abundance and dominant taxa of soil nitrite-oxidizing bacteria (NOB). Using a trait-based model, we then tested whether categorizing NOB into a few functional groups unified by physiological traits enables understanding and predicting how soil NOB respond to global environmental change. Contrasted responses to global change treatments were observed between three main NOB functional types. In particular, putatively mixotrophic Nitrobacter, rare under most treatments, became dominant under the 'High CO2+Nitrogen+Precipitation' treatment. The mechanistic trait-based model, which simulated ecological niches of NOB types consistent with previous ecophysiological reports, helped predicting the observed effects of global change on NOB and elucidating the underlying biotic and abiotic controls. Our results are a starting point for representing the overwhelming diversity of soil bacteria by a few functional types that can be incorporated into models of terrestrial ecosystems and biogeochemical processes.

10.
Microb Ecol ; 70(3): 809-18, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25877793

RESUMO

Many studies have assessed the responses of soil microbial functional groups to increases in atmospheric CO2 or N deposition alone and more rarely in combination. However, the effects of elevated CO2 and N on the (de)coupling between different microbial functional groups (e.g., different groups of nitrifiers) have been barely studied, despite potential consequences for ecosystem functioning. Here, we investigated the short-term combined effects of elevated CO2 and N supply on the abundances of the four main microbial groups involved in soil nitrification: ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), and nitrite-oxidizing bacteria (belonging to the genera Nitrobacter and Nitrospira) in grassland mesocosms. AOB and AOA abundances responded differently to the treatments: N addition increased AOB abundance, but did not alter AOA abundance. Nitrobacter and Nitrospira abundances also showed contrasted responses to the treatments: N addition increased Nitrobacter abundance, but decreased Nitrospira abundance. Our results support the idea of a niche differentiation between AOB and AOA, and between Nitrobacter and Nitrospira. AOB and Nitrobacter were both promoted at high N and C conditions (and low soil water content for Nitrobacter), while AOA and Nitrospira were favored at low N and C conditions (and high soil water content for Nitrospira). In addition, Nitrobacter abundance was positively correlated to AOB abundance and Nitrospira abundance to AOA abundance. Our results suggest that the couplings between ammonia and nitrite oxidizers are influenced by soil N availability. Multiple environmental changes may thus elicit rapid and contrasted responses between and among the soil ammonia and nitrite oxidizers due to their different ecological requirements.


Assuntos
Bactérias/metabolismo , Dióxido de Carbono/metabolismo , Nitrificação , Nitrogênio/metabolismo , Microbiologia do Solo , Amônia/metabolismo , Dactylis/crescimento & desenvolvimento , Pradaria , Nitritos/metabolismo , Oxirredução
11.
PLoS One ; 6(6): e20105, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21687708

RESUMO

BACKGROUND: Little is known about the combined impacts of global environmental changes and ecological disturbances on ecosystem functioning, even though such combined impacts might play critical roles in shaping ecosystem processes that can in turn feed back to climate change, such as soil emissions of greenhouse gases. METHODOLOGY/PRINCIPAL FINDINGS: We took advantage of an accidental, low-severity wildfire that burned part of a long-term global change experiment to investigate the interactive effects of a fire disturbance and increases in CO(2) concentration, precipitation and nitrogen supply on soil nitrous oxide (N(2)O) emissions in a grassland ecosystem. We examined the responses of soil N(2)O emissions, as well as the responses of the two main microbial processes contributing to soil N(2)O production--nitrification and denitrification--and of their main drivers. We show that the fire disturbance greatly increased soil N(2)O emissions over a three-year period, and that elevated CO(2) and enhanced nitrogen supply amplified fire effects on soil N(2)O emissions: emissions increased by a factor of two with fire alone and by a factor of six under the combined influence of fire, elevated CO(2) and nitrogen. We also provide evidence that this response was caused by increased microbial denitrification, resulting from increased soil moisture and soil carbon and nitrogen availability in the burned and fertilized plots. CONCLUSIONS/SIGNIFICANCE: Our results indicate that the combined effects of fire and global environmental changes can exceed their effects in isolation, thereby creating unexpected feedbacks to soil greenhouse gas emissions. These findings highlight the need to further explore the impacts of ecological disturbances on ecosystem functioning in the context of global change if we wish to be able to model future soil greenhouse gas emissions with greater confidence.


Assuntos
Incêndios , Efeito Estufa , Internacionalidade , Óxido Nitroso/química , Solo/química , Dióxido de Carbono/química , Precipitação Química , Desnitrificação , Nitrogênio/química , Microbiologia do Solo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...