Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mycotoxin Res ; 37(1): 1-9, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32981022

RESUMO

Beauvericin (BEA) is a member of the enniatin family of mycotoxins which has received increasing interest because of frequent occurrence in food and feed. By its ionophoric properties, BEA is able to alter membrane ion permeability uncoupling oxidative phosphorylation. It was also shown to alter oocyte mitochondrial function. In this study, the effects of BEA at 0.5, 1, ,3 and 5 µmol/L on expression of genes coding for key proteins of the mitochondrial chain in ovine oocytes and cumulus cells were evaluated at different time points of in vitro maturation (IVM), germinal vesicle (GV; t = 0), metaphase I (MI; t = 7 h), and metaphase II (MII; t = 24 h). The expression of nuclear (TFAM, NDUFA12, UQCRH, COX4, ATP5O) and mitochondrial (ND1, COX1, COX2, ATP6, ATP8) genes coding for proteins of Complexes I, III, IV, and V was analyzed by qRT-PCR. After BEA exposure, perturbed expression of all genes was observed in cumulus cells and in oocytes at the MI stage (7 h IVM). Expression of ND1, UQCRH, COX4 and ATP5O was downregulated in cumulus cells and upregulated in oocytes starting from 0.5 µmol/L BEA. Expression of TFAM, NDUFA12, COX1, COX2, ATP6, and ATP8 was upregulated starting from 1 µmol/L in cumulus cells and from 3 µmol/L in oocytes. Cumulus cells and oocytes displayed different gene expression patterns upon BEA exposure. The downregulation in cumulus cells of four genes coding for proteins of mitochondrial complexes could represent a major toxic event induced by BEA on the cumulus-oocyte complex which may result in mitochondrial functional alteration.


Assuntos
Células do Cúmulo/efeitos dos fármacos , Depsipeptídeos/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Micotoxinas/farmacologia , Oócitos/efeitos dos fármacos , Animais , Feminino , Ovinos
2.
Exp Gerontol ; 98: 99-109, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28807823

RESUMO

We previously reported the ability of dietary supplementation with acetyl-l-carnitine (ALCAR) to prevent age-related decreases of mitochondrial biogenesis in skeletal muscle and liver of old rats. Here, we investigate the effects of ALCAR supplementation in cerebral hemispheres and cerebellum of old rats by analyzing several parameters linked to mitochondrial biogenesis, mitochondrial dynamics and antioxidant defenses. We measured the level of the coactivators PGC-1α and PGC-1ß and of the factors regulating mitochondrial biogenesis, finding an age-related decrease of PGC-1ß, whereas PGC-1α level was unvaried. Twenty eight-month old rats supplemented with ALCAR for one and two months showed increased levels of both factors. Accordingly, the expression of the two transcription factors NRF-1 and TFAM followed the same trend of PGC-1ß. The level of mtDNA, ND1 and the activity of citrate synthase, were decreased with aging and increased following ALCAR treatment. Furthermore, ALCAR counteracted the age-related increase of deleted mtDNA. We also analyzed the content of proteins involved in mitochondrial dynamics (Drp1, Fis1, OPA1 and MNF2) and found an age-dependent increase of MFN2 and of the long form of OPA1. ALCAR treatment restored the content of the two proteins to the level of the young rats. No changes with aging and ALCAR were observed for Drp1 and Fis1. ALCAR reduced total cellular levels of oxidized PRXs and counteracted the age-related decrease of PRX3 and SOD2. Overall, our findings indicate a systemic positive effect of ALCAR dietary treatment and a tissue specific regulation of mitochondrial homeostasis in brain of old rats. Moreover, it appears that ALCAR acts as a nutrient since in most cases its effects were almost completely abolished one month after treatment suspension. Dietary supplementation of old rats with this compound seems a valuable approach to prevent age-related mitochondrial dysfunction and might ultimately represent a strategy to delay age-associated negative consequences in mitochondrial homeostasis.


Assuntos
Acetilcarnitina/farmacologia , Envelhecimento/metabolismo , Antioxidantes/metabolismo , Encéfalo/efeitos dos fármacos , Suplementos Nutricionais , Mitocôndrias/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Biogênese de Organelas , Fatores Etários , Envelhecimento/genética , Envelhecimento/patologia , Animais , Encéfalo/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Masculino , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas Mitocondriais/metabolismo , Mutação , Estresse Oxidativo/efeitos dos fármacos , Ratos Endogâmicos F344 , Fatores de Transcrição/metabolismo
3.
Rejuvenation Res ; 15(2): 136-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22533417

RESUMO

The behavior of the peroxisome proliferator-activated receptor-γ coactivators PGC-1α/PGC-ß-dependent mitochondrial biogenesis signaling pathway, as well as the level of some antioxidant enzymes and proteins involved in mitochondrial dynamics in the liver of old rats before and after 2 months of acetyl-L-carnitine (ALCAR) supplementation, was tested. The results reveal that ALCAR treatment is able to reverse the age-associated decline of PGC-1α, PGC-1ß, nuclear respiratory factor 1 (NRF-1), mitochondrial transcription factor A (TFAM), nicotinamide adenine dinucleotide (NADH) dehydrogenase subunit 1 (ND1), and cytochrome c oxidase subunit IV (COX IV) protein levels, of mitochondrial DNA (mtDNA) content, and of citrate synthase activity. Moreover, it partially reverses the mitochondrial superoxide dismutase 2 (SOD2) decline and reduces the cellular content of oxidized peroxiredoxins. These data demonstrate that ALCAR treatment is able to promote in the old rat liver a new mitochondrial population that can contribute to the cellular oxidative stress reduction. Furthermore, a remarkable decline of Drp1 and of Mfn2 proteins is reported here for the first time, suggesting a reduced mitochondrial dynamics in aging liver with no effect of ALCAR treatment.


Assuntos
Acetilcarnitina/metabolismo , Envelhecimento , Mitocôndrias/metabolismo , PPAR gama/metabolismo , Peroxirredoxinas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Animais , Autofagia , DNA Mitocondrial/metabolismo , Suplementos Nutricionais , Fígado/metabolismo , Masculino , Estresse Oxidativo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Ratos , Ratos Endogâmicos F344 , Superóxido Dismutase/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...