Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 32(6): 1497-1514, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35398939

RESUMO

Structural variants (SVs) can promote speciation by directly causing reproductive isolation or by suppressing recombination across large genomic regions. Whereas examples of each mechanism have been documented, systematic tests of the role of SVs in speciation are lacking. Here, we take advantage of long-read (Oxford nanopore) whole-genome sequencing and a hybrid zone between two Lycaeides butterfly taxa (L. melissa and Jackson Hole Lycaeides) to comprehensively evaluate genome-wide patterns of introgression for SVs and relate these patterns to hypotheses about speciation. We found >100,000 SVs segregating within or between the two hybridizing species. SVs and SNPs exhibited similar levels of genetic differentiation between species, with the exception of inversions, which were more differentiated. We detected credible variation in patterns of introgression among SV loci in the hybrid zone, with 562 of 1419 ancestry-informative SVs exhibiting genomic clines that deviated from null expectations based on genome-average ancestry. Overall, hybrids exhibited a directional shift towards Jackson Hole Lycaeides ancestry at SV loci, consistent with the hypothesis that these loci experienced more selection on average than SNP loci. Surprisingly, we found that deletions, rather than inversions, showed the highest skew towards excess ancestry from Jackson Hole Lycaeides. Excess Jackson Hole Lycaeides ancestry in hybrids was also especially pronounced for Z-linked SVs and inversions containing many genes. In conclusion, our results show that SVs are ubiquitous and suggest that SVs in general, but especially deletions, might disproportionately affect hybrid fitness and thus contribute to reproductive isolation.


Assuntos
Genômica , Metagenômica , Deriva Genética , Polimorfismo de Nucleotídeo Único/genética , Isolamento Reprodutivo
2.
G3 (Bethesda) ; 12(10)2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-35976120

RESUMO

Infections by maternally inherited bacterial endosymbionts, especially Wolbachia, are common in insects and other invertebrates but infection dynamics across species ranges are largely under studied. Specifically, we lack a broad understanding of the origin of Wolbachia infections in novel hosts, and the historical and geographical dynamics of infections that are critical for identifying the factors governing their spread. We used Genotype-by-Sequencing data from previous population genomics studies for range-wide surveys of Wolbachia presence and genetic diversity in North American butterflies of the genus Lycaeides. As few as one sequence read identified by assembly to a Wolbachia reference genome provided high accuracy in detecting infections in host butterflies as determined by confirmatory PCR tests, and maximum accuracy was achieved with a threshold of only 5 sequence reads per host individual. Using this threshold, we detected Wolbachia in all but 2 of the 107 sampling localities spanning the continent, with infection frequencies within populations ranging from 0% to 100% of individuals, but with most localities having high infection frequencies (mean = 91% infection rate). Three major lineages of Wolbachia were identified as separate strains that appear to represent 3 separate invasions of Lycaeides butterflies by Wolbachia. Overall, we found extensive evidence for acquisition of Wolbachia through interspecific transfer between host lineages. Strain wLycC was confined to a single butterfly taxon, hybrid lineages derived from it, and closely adjacent populations in other taxa. While the other 2 strains were detected throughout the rest of the continent, strain wLycB almost always co-occurred with wLycA. Our demographic modeling suggests wLycB is a recent invasion. Within strain wLycA, the 2 most frequent haplotypes are confined almost exclusively to separate butterfly taxa with haplotype A1 observed largely in Lycaeides melissa and haplotype A2 observed most often in Lycaeides idas localities, consistent with either cladogenic mode of infection acquisition from a common ancestor or by hybridization and accompanying mutation. More than 1 major Wolbachia strain was observed in 15 localities. These results demonstrate the utility of using resequencing data from hosts to quantify Wolbachia genetic variation and infection frequency and provide evidence of multiple colonizations of novel hosts through hybridization between butterfly lineages and complex dynamics between Wolbachia strains.


Assuntos
Borboletas , Wolbachia , Animais , Borboletas/genética , Borboletas/microbiologia , DNA Mitocondrial/genética , Haplótipos/genética , Filogenia , Wolbachia/genética
3.
Proc Natl Acad Sci U S A ; 119(36): e2206052119, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36037349

RESUMO

Plant-insect interactions are common and important in basic and applied biology. Trait and genetic variation can affect the outcome and evolution of these interactions, but the relative contributions of plant and insect genetic variation and how these interact remain unclear and are rarely subject to assessment in the same experimental context. Here, we address this knowledge gap using a recent host-range expansion onto alfalfa by the Melissa blue butterfly. Common garden rearing experiments and genomic data show that caterpillar performance depends on plant and insect genetic variation, with insect genetics contributing to performance earlier in development and plant genetics later. Our models of performance based on caterpillar genetics retained predictive power when applied to a second common garden. Much of the plant genetic effect could be explained by heritable variation in plant phytochemicals, especially saponins, peptides, and phosphatidyl cholines, providing a possible mechanistic understanding of variation in the species interaction. We find evidence of polygenic, mostly additive effects within and between species, with consistent effects of plant genotype on growth and development across multiple butterfly species. Our results inform theories of plant-insect coevolution and the evolution of diet breadth in herbivorous insects and other host-specific parasites.


Assuntos
Borboletas , Herbivoria , Plantas , Animais , Borboletas/genética , Genótipo , Herbivoria/genética , Larva , Plantas/genética
4.
Am Nat ; 198(5): E152-E169, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34648398

RESUMO

AbstractMicrogeographic genetic divergence can create fine-scale trait variation. When such divergence occurs within foundation species, then it might impact community structure and ecosystem function and cause other cascading ecological effects. We tested for parallel microgeographic trait and genetic divergence in Spartina alterniflora, a foundation species that dominates salt marshes of the US Atlantic and Gulf coasts. Spartina is characterized by tall-form (1-2 m) plants at lower tidal elevations and short-form (<0.5 m) plants at higher tidal elevations, yet whether this trait variation reflects plastic and/or genetically differentiated responses to these environmental conditions remains unclear. In the greenhouse, seedlings raised from tall-form plants grew taller than those from short-form plants, indicating a heritable difference in height. When we reciprocally transplanted seedlings back into the field for a growing season, composite fitness (survivorship and seed production) and key plant traits (plant height and biomass allocation) differed interactively across origin and transplant zones in a manner indicative of local adaptation. Further, a survey of single nucleotide polymorphisms revealed repeated, independent genetic differentiation between tall- and short-form Spartina at five of six tested marshes across the native range. The observed parallel, microgeographic genetic differentiation in Spartina likely underpins marsh health and functioning and provides an underappreciated mechanism that might increase capacity of marshes to adapt to rising sea levels.


Assuntos
Ecossistema , Plantas , Biomassa , Poaceae , Áreas Alagadas
5.
Am J Bot ; 108(11): 2257-2268, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34618352

RESUMO

PREMISE: When divergent lineages come into secondary contact, reproductive isolation may be incomplete, thus providing an opportunity to investigate how speciation is manifested in the genome. The Louisiana Irises (Iris, series Hexagonae) comprise a group of three or more ecologically and reproductively divergent lineages that can produce hybrids where they come into contact. We estimated standing genetic variation to understand the current distribution of population structure in the Louisiana Irises. METHODS: We used genotyping-by-sequencing techniques to sample the genomes of Louisiana Iris species across their ranges. We sampled 20 populations (n = 632 individuals) across 11,249 loci and used Entropy and PCA models to assess population genetic data. RESULTS: We discovered evidence for interspecific gene flow in parts of the range. Our analysis revealed patterns of population structure at odds with widely accepted nominal taxonomy. We discovered undescribed hybrid populations, designated as belonging to the I. brevicaulis lineage. Iris nelsonii shared significant ancestry with only one of the purported parent species, I. fulva, evidence inconsistent with a hybrid origin. CONCLUSIONS: This study provides several key findings important to the investigation of standing genetic variation in the Louisiana Iris species complex. Compared to the other nominal species, I. brevicaulis contains a large amount of genetic diversity. In addition, we discovered a previously unknown hybrid zone between I. brevicaulis and I. hexagona along the Texas coast. Finally, our results do not support the long-standing hypothesis that I. nelsonii has mixed ancestry from three parental taxa.


Assuntos
Gênero Iris , Especiação Genética , Estruturas Genéticas , Hibridização Genética , Gênero Iris/genética , Louisiana , Isolamento Reprodutivo , Texas
6.
Mol Ecol ; 30(9): 1962-1978, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33604965

RESUMO

The genomic variation of an invasive species may be affected by complex demographic histories and evolutionary changes during the invasion. Here, we describe the relative influence of bottlenecks, clonality, and population expansion in determining genomic variability of the widespread red macroalga Agarophyton vermiculophyllum. Its introduction from mainland Japan to the estuaries of North America and Europe coincided with shifts from predominantly sexual to partially clonal reproduction and rapid adaptive evolution. A survey of 62,285 SNPs for 351 individuals from 35 populations, aligned to 24 chromosome-length scaffolds indicate that linkage disequilibrium (LD), observed heterozygosity (Ho ), Tajima's D, and nucleotide diversity (Pi) were greater among non-native than native populations. Evolutionary simulations indicate LD and Tajima's D were consistent with a severe population bottleneck. Also, the increased rate of clonal reproduction in the non-native range could not have produced the observed patterns by itself but may have magnified the bottleneck effect on LD. Elevated marker diversity in the genetic source populations could have contributed to the increased Ho and Pi observed in the non-native range. We refined the previous invasion source region to a ~50 km section of northeastern Honshu Island. Outlier detection methods failed to reveal any consistently differentiated loci shared among invaded regions, probably because of the complex A. vermiculophyllum demographic history. Our results reinforce the importance of demographic history, specifically founder effects, in driving genomic variation of invasive populations, even when localized adaptive evolution and reproductive system shifts are observed.


Assuntos
Efeito Fundador , Variação Genética , Europa (Continente) , Genética Populacional , Genômica , Humanos , Japão , Desequilíbrio de Ligação , América do Norte
7.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33431560

RESUMO

Insects have diversified through more than 450 million y of Earth's changeable climate, yet rapidly shifting patterns of temperature and precipitation now pose novel challenges as they combine with decades of other anthropogenic stressors including the conversion and degradation of land. Here, we consider how insects are responding to recent climate change while summarizing the literature on long-term monitoring of insect populations in the context of climatic fluctuations. Results to date suggest that climate change impacts on insects have the potential to be considerable, even when compared with changes in land use. The importance of climate is illustrated with a case study from the butterflies of Northern California, where we find that population declines have been severe in high-elevation areas removed from the most immediate effects of habitat loss. These results shed light on the complexity of montane-adapted insects responding to changing abiotic conditions. We also consider methodological issues that would improve syntheses of results across long-term insect datasets and highlight directions for future empirical work.


Assuntos
Borboletas , Mudança Climática , Animais , California , Ecossistema , Estresse Fisiológico
8.
J Phycol ; 57(1): 279-294, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33098662

RESUMO

For many taxa, including isomorphic haplodiplontic macroalgae, determining sex and ploidy is challenging, thereby limiting the scope of some population demographic and genetic studies. Here, we used double-digest restriction site-associated DNA sequencing (ddRAD-seq) to identify sex-linked molecular markers in the widespread red alga Agarophyton vermiculophyllum. In the ddRAD-seq library, we included 10 female gametophytes, 10 male gametophytes, and 16 tetrasporophytes from one native and one non-native site (N = 40 gametophytes and N = 32 tetrasporophytes total). We identified seven putatively female-linked and 19 putatively male-linked sequences. Four female- and eight male-linked markers amplified in all three life cycle stages. Using one female- and one male-linked marker that were sex-specific, we developed a duplex PCR and tested the efficacy of this assay on a subset of thalli sampled at two sites in the non-native range. We confirmed ploidy based on the visual observation of reproductive structures and previous microsatellite genotyping at 10 polymorphic loci. For 32 vegetative thalli, we were able to assign sex and confirm ploidy in these previously genotyped thalli. These markers will be integral to ongoing studies of A. vermiculophyllum invasion. We discuss the utility of RAD-seq over other approaches previously used, such as RAPDs (random amplified polymorphic DNA), for future work designing sex-linked markers in other haplodiplontic macroalgae for which genomes are lacking.


Assuntos
Rodófitas , Alga Marinha , Feminino , Genoma , Células Germinativas Vegetais , Masculino , Rodófitas/genética , Análise de Sequência de DNA
9.
Ecol Evol ; 10(10): 4362-4374, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32489603

RESUMO

Modern metabolomic approaches that generate more comprehensive phytochemical profiles than were previously available are providing new opportunities for understanding plant-animal interactions. Specifically, we can characterize the phytochemical landscape by asking how a larger number of individual compounds affect herbivores and how compounds covary among plants. Here we use the recent colonization of alfalfa (Medicago sativa) by the Melissa blue butterfly (Lycaeides melissa) to investigate the effects of indivdiual compounds and suites of covarying phytochemicals on caterpillar performance. We find that survival, development time, and adult weight are all associated with variation in nutrition and toxicity, including biomolecules associated with plant cell function as well as putative anti-herbivore action. The plant-insect interface is complex, with clusters of covarying compounds in many cases encompassing divergent effects on different aspects of caterpillar performance. Individual compounds with the strongest associations are largely specialized metabolites, including alkaloids, phenolic glycosides, and saponins. The saponins are represented in our data by more than 25 individual compounds with beneficial and detrimental effects on L. melissa caterpillars, which highlights the value of metabolomic data as opposed to approaches that rely on total concentrations within broad defensive classes.

10.
Nat Commun ; 11(1): 2179, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32358487

RESUMO

Genomic outcomes of hybridization depend on selection and recombination in hybrids. Whether these processes have similar effects on hybrid genome composition in contemporary hybrid zones versus ancient hybrid lineages is unknown. Here we show that patterns of introgression in a contemporary hybrid zone in Lycaeides butterflies predict patterns of ancestry in geographically adjacent, older hybrid populations. We find a particularly striking lack of ancestry from one of the hybridizing taxa, Lycaeides melissa, on the Z chromosome in both the old and contemporary hybrids. The same pattern of reduced L. melissa ancestry on the Z chromosome is seen in two other ancient hybrid lineages. More generally, we find that patterns of ancestry in old or ancient hybrids are remarkably predictable from contemporary hybrids, which suggests selection and recombination affect hybrid genomes in a similar way across disparate time scales and during distinct stages of speciation and species breakdown.


Assuntos
Borboletas/genética , Hibridização Genética/genética , Cromossomos Sexuais/genética , Animais , Fluxo Gênico , Loci Gênicos , Especiação Genética , Genética Populacional , Genoma de Inseto , Genômica , Filogenia , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
11.
Mol Ecol ; 28(18): 4197-4211, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31478268

RESUMO

Disentangling the processes underlying geographic and environmental patterns of biodiversity challenges biologists as such patterns emerge from eco-evolutionary processes confounded by spatial autocorrelation among sample units. The herbivorous insect, Belonocnema treatae (Hymenoptera: Cynipidae), exhibits regional specialization on three plant species whose geographic distributions range from sympatry through allopatry across the southern United States. Using range-wide sampling spanning the geographic ranges of the three host plants and genotyping-by-sequencing of 1,217 individuals, we tested whether this insect herbivore exhibited host plant-associated genomic differentiation while controlling for spatial autocorrelation among the 58 sample sites. Population genomic structure based on 40,699 SNPs was evaluated using the hierarchical Bayesian model entropy to assign individuals to genetic clusters and estimate admixture proportions. To control for spatial autocorrelation, distance-based Moran's eigenvector mapping was used to construct regression variables summarizing spatial structure inherent among sample sites. Distance-based redundancy analysis (dbRDA) incorporating the spatial variables was then applied to partition host plant-associated differentiation (HAD) from spatial autocorrelation. By combining entropy and dbRDA to analyse SNP data, we unveiled a complex mosaic of highly structured differentiation within and among gall-former populations finding evidence that geography, HAD and spatial autocorrelation all play significant roles in explaining patterns of genomic differentiation in B. treatae. While dbRDA confirmed host association as a significant predictor of patterns of genomic variation, spatial autocorrelation among sites explained the largest proportion of variation. Our results demonstrate the value of combining dbRDA with hierarchical structural analyses to partition spatial/environmental patterns of genomic variation.


Assuntos
Biodiversidade , Geografia , Herbivoria/fisiologia , Interações Hospedeiro-Parasita , Himenópteros/fisiologia , Quercus/parasitologia , Animais , Entropia , Variação Genética , Genética Populacional , Genótipo , Interações Hospedeiro-Parasita/genética , Himenópteros/genética , Análise de Componente Principal , Quercus/genética , Estados Unidos
12.
Biol Lett ; 15(1): 20180723, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30958212

RESUMO

Many tropical fruit-feeding nymphalid butterflies are associated with either the forest canopy or the understorey; however, the exceptions offer insights into the origins of tropical diversity. As it occurs in both habitats of tropical forests in Ecuador and Peru, Archaeoprepona demophon is one such exception. We compared patterns of occurrence of A. demophon in the canopy and understorey and population genomic variation for evidence of ecological and genetic differentiation between habitats. We found that butterfly occurrences in the canopy were largely uncorrelated with occurrences in the understorey at both localities, indicating independent demographic patterns in the two habitats. We also documented modest, significant genome-level differentiation at both localities. Genetic differentiation between habitat types (separated by approx. 20 m in elevation) was comparable to levels of differentiation between sampling locations (approx. 1500 km). We conclude that canopy and understorey populations of A. demophon represent incipient independent evolutionary units. These findings support the hypothesis that divergence between canopy and understorey-associated populations might be a mechanism generating insect diversity in the tropics.


Assuntos
Borboletas , Animais , Evolução Biológica , Ecossistema , Equador , Florestas , Árvores , Clima Tropical
13.
Ecol Evol ; 9(4): 2083-2095, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30847094

RESUMO

When ecologically divergent taxa encounter one another, hybrid zones can form when reproductive isolation is incomplete. The location of such hybrid zones can be influenced by environmental variables, and an ecological context can provide unique insights into the mechanisms by which species diverge and are maintained. Two ecologically differentiated species of small benthic fishes, the endemic and imperiled prairie chub, Macrhybopsis australis, and the shoal chub, Macrhybopsis hyostoma, are locally sympatric within the upper Red River Basin of Texas. We integrated population genomic data and environmental data to investigate species divergence and the maintenance of species boundaries in these two species. We found evidence of advanced-generation asymmetric hybridization and introgression, with shoal chub alleles introgressing more frequently into prairie chubs than the reciprocal. Using a Bayesian Genomic Cline framework, patterns of genomic introgression were revealed to be quite heterogeneous, yet shoal chub alleles were found to have likely selectively introgressed across species boundaries significantly more often than prairie chub alleles, potentially explaining some of the observed asymmetry in hybridization. These patterns were remarkably consistent across two sampled geographic regions of hybridization. Several environmental variables were found to significantly predict individual admixture, suggesting ecological isolation might maintain species boundaries.

14.
Glob Chang Biol ; 25(6): 2127-2136, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30770601

RESUMO

Certain general facets of biotic response to climate change, such as shifts in phenology and geographic distribution, are well characterized; however, it is not clear whether the observed similarity of responses across taxa will extend to variation in other population-level processes. We examined population response to climatic variation using long-term incidence data (collected over 42 years) encompassing 149 butterfly species and considerable habitat diversity (10 sites along an elevational gradient from sea level to over 2,700 m in California). Population responses were characterized by extreme heterogeneity that was not attributable to differences in species composition among sites. These results indicate that habitat heterogeneity might be a buffer against climate change and highlight important questions about mechanisms maintaining interpopulation differences in responses to weather. Despite overall heterogeneity of response, population dynamics were accurately predicted by our model for many species at each site. However, the overall correlation between observed and predicted incidence in a cross validation analysis was moderate (Pearson's r = 0.23, SE 0.01), and 97% of observed data fell within the predicted 95% credible intervals. Prediction was most successful for more abundant species as well as for sites with lower annual turnover. Population-level heterogeneity in response to climate variation and the limits of our predictive power highlight the challenges for a future of increasing climatic variability.


Assuntos
Borboletas/fisiologia , Mudança Climática , Animais , California , Ecossistema , Dinâmica Populacional
15.
J Hered ; 110(3): 361-369, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30657932

RESUMO

In recent decades, an increased understanding of molecular ecology has led to a reinterpretation of the role of gene flow during the evolution of reproductive isolation and biological novelty. For example, even in the face of ongoing gene flow strong selection may maintain divergent polymorphisms, or gene flow may introduce novel biological diversity via hybridization and introgression from a divergent species. Herein, we elucidate the evolutionary history and genomic basis of a trophically polymorphic trait in a species of cichlid fish, Herichthys minckleyi. We explored genetic variation at 3 hierarchical levels; between H. minckleyi (n = 69) and a closely related species Herichthys cyanoguttatus (n = 10), between H. minckleyi individuals from 2 geographic locations, and finally between individuals with alternate morphotypes at both a genome-wide and locus-specific scale. We found limited support for the hypothesis that the H. minckleyi polymorphism is the result of ongoing hybridization between the 2 species. Within H. minckleyi we found evidence of geographic genetic structure, and using traditional population genetic analyses found that individuals of alternate morphotypes within a pool appear to be panmictic. However, when we used a locus-specific approach to examine the relationship between multi-locus genotype, tooth size, and geographic sampling, we found the first evidence for molecular genetic differences between the H. minckleyi morphotypes.


Assuntos
Ciclídeos/genética , Genética Populacional , Genoma , Genômica , Animais , Fluxo Gênico , Variação Genética , Genômica/métodos , Polimorfismo Genético
16.
Genome Biol Evol ; 11(2): 415-430, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30496538

RESUMO

We analyzed evolutionary rates of conserved, duplicated myosin V (myo5) genes in nine teleost species to examine the outcomes of duplication events. Syntenic analysis and ancestral chromosome mapping suggest one tandem gene duplication event leading to the appearance of myo5a and myo5c, two rounds of whole genome duplication for vertebrates, and an additional round of whole genome duplication for teleosts account for the presence and location of the myo5 genes and their duplicates in teleosts and other vertebrates and the timing of the duplication events. Phylogenetic analyses reveal a previously unidentified myo5 clade that we refer to now as myo5bb. Analysis using dN/dS rate comparisons revealed large regions within duplicated myo5 genes that are highly conserved. Codons identified in other studies as encoding functionally important portions of the Myo5a and Myo5b proteins are shown to be highly conserved within the newly identified myo5bb clade and in other myo5 duplicates. As much as 30% of 319 codons encoding the cargo-binding domain in the myo5aa genes are conserved in all three codon positions in nine teleost species. For the myo5bb cargo-binding domain, 6.6% of 336 codons have zero substitutions in all nine teleost species. Using molecular evolution assays, we identify the myo5bb branch as being subject to evolutionary rate variation with the cargo-binding domain, having 20% of the sites under positive selection and the motor domain having 8% of its sites under positive selection. The high number of invariant codons coupled with relatively high dN/dS values in the region of the myo5 genes encoding the ATP-binding domain suggests the encoded proteins retain function and may have acquired novel functions associated with changes to the cargo-binding domain.


Assuntos
Evolução Molecular , Peixes/genética , Modelos Genéticos , Miosina Tipo V/genética , Seleção Genética , Animais , Duplicação Gênica , Filogenia , Sintenia
17.
Mol Ecol ; 27(12): 2651-2666, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29617046

RESUMO

Despite accumulating evidence that evolution can be predictable, studies quantifying the predictability of evolution remain rare. Here, we measured the predictability of genome-wide evolutionary changes associated with a recent host shift in the Melissa blue butterfly (Lycaeides melissa). We asked whether and to what extent genome-wide patterns of evolutionary change in nature could be predicted (i) by comparisons among instances of repeated evolution and (ii) from SNP × performance associations in a laboratory experiment. We delineated the genetic loci (SNPs) most strongly associated with host use in two L. melissa lineages that colonized alfalfa. Whereas most SNPs were strongly associated with host use in none or one of these lineages, we detected a an approximately twofold excess of SNPs associated with host use in both lineages. Similarly, we found that host-associated SNPs in nature could also be partially predicted from SNP × performance (survival and weight) associations in a laboratory rearing experiment. But the extent of overlap, and thus degree of predictability, was somewhat reduced. Although we were able to predict (to a modest extent) the SNPs most strongly associated with host use in nature (in terms of parallelism and from the experiment), we had little to no ability to predict the direction of evolutionary change during the colonization of alfalfa. Our results show that different aspects of evolution associated with recent adaptation can be more or less predictable and highlight how stochastic and deterministic processes interact to drive patterns of genome-wide evolutionary change.


Assuntos
Borboletas/genética , Polimorfismo de Nucleotídeo Único/genética , Adaptação Fisiológica/genética , Animais , Evolução Biológica , Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , Larva/genética , Medicago sativa
18.
Mol Ecol Resour ; 18(4): 892-907, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29532608

RESUMO

Patterns of phenotypic variation within and among species can be shaped and constrained by trait genetic architecture. This is particularly true for complex traits, such as butterfly wing patterns, that consist of multiple elements. Understanding the genetics of complex trait variation across species boundaries is difficult, as it necessitates mapping in structured populations and can involve many loci with small or variable phenotypic effects. Here, we investigate the genetic architecture of complex wing pattern variation in Lycaeides butterflies as a case study of mapping multivariate traits in wild populations that include multiple nominal species or groups. We identify conserved modules of integrated wing pattern elements within populations and species. We show that trait covariances within modules have a genetic basis and thus represent genetic constraints that can channel evolution. Consistent with this, we find evidence that evolutionary changes in wing patterns among populations and species occur in the directions of genetic covariances within these groups. Thus, we show that genetic constraints affect patterns of biological diversity (wing pattern) in Lycaeides, and we provide an analytical template for similar work in other systems.


Assuntos
Borboletas/genética , Estudos de Associação Genética , Asas de Animais/anatomia & histologia , Animais , Borboletas/anatomia & histologia , Locos de Características Quantitativas
19.
Mol Ecol ; 27(4): 959-978, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29319908

RESUMO

Hybrid zones provide unique opportunities to examine reproductive isolation and introgression in nature. We utilized 45,384 single nucleotide polymorphism (SNP) loci to perform association mapping of 14 floral, vegetative and ecological traits that differ between Iris hexagona and Iris fulva, and to investigate, using a Bayesian genomic cline (BGC) framework, patterns of genomic introgression in a large and phenotypically diverse hybrid zone in southern Louisiana. Many loci of small effect size were consistently found to be associated with phenotypic variation across all traits, and several individual loci were revealed to influence phenotypic variation across multiple traits. Patterns of genomic introgression were quite heterogeneous throughout the Louisiana Iris genome, with I. hexagona alleles tending to be favoured over those of I. fulva. Loci that were found to have exceptional patterns of introgression were also found to be significantly associated with phenotypic variation in a small number of morphological traits. However, this was the exception rather than the rule, as most loci that were associated with morphological trait variation were not significantly associated with excess ancestry. These findings provide insights into the complexity of the genomic architecture of phenotypic differences and are a first step towards identifying loci that are associated with both trait variation and reproductive isolation in nature.


Assuntos
Mapeamento Cromossômico , Genoma de Planta , Hibridização Genética , Gênero Iris/genética , Característica Quantitativa Herdável , Isolamento Reprodutivo , Teorema de Bayes , Variação Genética , Modelos Lineares , Louisiana , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Análise de Componente Principal , Probabilidade
20.
Ecol Evol ; 7(23): 10278-10288, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29238554

RESUMO

Geographic isolation is known to contribute to divergent evolution, resulting in unique phenotypes. Oftentimes morphologically distinct populations are found to be interfertile while reproductive isolation is found to exist within nominal morphological species revealing the existence of cryptic species. These disparities can be difficult to predict or explain especially when they do not reflect an inferred history of common ancestry which suggests that environmental factors affect the nature of ecological divergence. A series of laboratory experiments and observational studies were used to address what role biogeographic factors may play in the ecological divergence of Hyalella amphipods. It was found that geographic isolation plays a key role in the evolution of reproductive isolation and divergent morphology and that divergence cannot be explained by molecular genetic variation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...