Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37176434

RESUMO

Research on the use of biomass resources for the generation of energy and chemical compounds is of great interest worldwide. The development and growth of the biodiesel industry has led to a parallel market for the supply of glycerol, its main by-product. Its wide availability and relatively low cost as a raw material make glycerol a basic component for obtaining various chemical products and allows for the development of a biorefinery around biodiesel plants, through the technological integration of different production processes. This work proposes a review of one of the reactions of interest in the biorefinery environment: the hydrogenolysis of glycerol to 1,2-propylene glycol. The article reviews more than 300 references, covering literature from about 20 years, focusing on the heterogeneous catalysts used for the production of glycol. In this sense, from about 175 catalysts, between bulk and supported ones, were revised and discussed critically, based on noble metals, such as Ru, Pt, Pd, and non-noble metals as Cu, Ni, Co, both in liquid (2-10 MPa, 120-260 °C) and vapor phase (0.1 MPa, 200-300 °C). Then, the effect of the main operational and decision variables, such as temperature, pressure, catalyst/glycerol mass ratio, space velocity, and H2 flow, are discussed, depending on the reactors employed. Finally, the formulation of several kinetic models and stability studies are presented, discussing the main deactivation mechanisms of the catalytic systems such as coking, leaching, and sintering, and the presence of impurities in the glycerol feed. It is expected that this work will serve as a tool for the development of more efficient catalytic materials and processes towards the future projection of glycerol biorefineries.

2.
Bioresour Technol ; 111: 500-3, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22386627

RESUMO

PtSn supported on SiO(2) obtained via surface organometallic chemistry techniques catalyzes hydrogenolysis of glycerol to obtain bio-propylene glycol (PG). Bimetallic catalysts with Sn contents between 0.1% and 1% wt were carefully prepared by selective hydrogenolysis of Sn(n-C(4)H(9))(4) on Pt. TEM, TPR, H(2) and CO chemisorptions, and XPS studies have shown that tin selective deposition on the metallic phase is obtained. At 200°C under N(2) or H(2) pressure, the presence of tin increases drastically: both the selectivity and the activity of the glycerol conversion into PG. During 2h batch runs; it could be observed that PtSn catalysts with Sn/Pt ratio=0.2 showed the best performance (PG selectivity=59% and 83% under N(2) and H(2) pressure respectively). The increase in activity and selectivity could be explained by the presence of Sn(+n) species "acid Lewis sites" which would facilitate the C-OH adsorption and its subsequent C-O cleavage favoring the propylene glycol production.


Assuntos
Glicerol/química , Hidrogênio/química , Platina/química , Propilenoglicol/química , Estanho/química , Catálise , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...