Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EBioMedicine ; 82: 104157, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35863292

RESUMO

BACKGROUND: Primary HPV screening, due to its low specificity, requires an additional liquid-based cytology (LBC) triage test. However, even with LBC triage there has been a near doubling in the number of patients referred for colposcopy in recent years, the majority having low-grade disease. METHODS: To counter this, a triage test that generates a spatial map of the cervical surface at a molecular level has been developed which removes the subjectivity associated with LBC by facilitating identification of lesions in their entirety. 50 patients attending colposcopy were recruited to participate in a pilot study to evaluate the test. For each patient, cells were lifted from the cervix onto a membrane (cervical cell lift, CCL) and immunostained with a biomarker of precancerous cells, generating molecular maps of the cervical surface. These maps were analysed to detect high-grade lesions, and the results compared to the final histological diagnosis. FINDINGS: We demonstrated that spatial molecular mapping of the cervix has a sensitivity of 90% (95% CI 69-98) (positive predictive value 81% (95% CI 60-92)) for the detection of high-grade disease, and that AI-based analysis could aid disease detection through automated flagging of biomarker-positive cells. INTERPRETATION: Spatial molecular mapping of the CCL improved the rate of detection of high-grade disease in comparison to LBC, suggesting that this method has the potential to decisively identify patients with clinically relevant disease that requires excisional treatment. FUNDING: CRUK Early Detection Project award, Jordan-Singer BSCCP award, Addenbrooke's Charitable Trust, UK-MRC, Janssen Pharmaceuticals/Advanced Sterilisation Products, and NWO.


Assuntos
Infecções por Papillomavirus , Lesões Pré-Cancerosas , Displasia do Colo do Útero , Neoplasias do Colo do Útero , Colo do Útero , Detecção Precoce de Câncer/métodos , Feminino , Humanos , Papillomaviridae , Projetos Piloto , Lesões Pré-Cancerosas/diagnóstico , Triagem , Neoplasias do Colo do Útero/diagnóstico , Neoplasias do Colo do Útero/patologia , Esfregaço Vaginal/métodos , Displasia do Colo do Útero/diagnóstico
2.
J Clin Res Pediatr Endocrinol ; 14(2): 221-226, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33832185

RESUMO

Congenital hypothyroidism (CH) due to dyshormonogenesis may occur due to mutations in any of the key genes involved in thyroid hormone biosynthesis (TG, TPO, DUOX2, DUOXA2, SLC5A5, IYD, SLC26A4 and SLC26A7). Mutations in the thyroglobulin gene (TG) are frequently associated with goiter, which may present fetally or neonatally, although a spectrum of phenotypes is reported. We present the case of a woman of Eritrean origin who presented in the third trimester of pregnancy in the early stages of labor. Ultrasound at presentation revealed a fetal neck swelling consistent with a goiter. Following delivery by Caesarian section with minimal respiratory support, the infant was found to be hypothyroid with undetectable serum levels of thyroglobulin. Sequencing of the TG revealed a homozygous donor splice site pathogenic variant (c.5686+1delG) not previously described in the literature. Levothyroxine treatment resulted in normal growth and psychomotor development. Goitrous CH with inappropriately low thyroglobulin has previously been reported in patients harbouring homozygous single nucleotide substitutions at the same TG donor splice site, which result in exon skipping and retention of malformed thyroglobulin by the endoplasmic reticulum. We conclude that the TG c.5686+1delG pathogenic variant is the likely basis for our patient's fetal goiter and CH, and that the clinical phenotype associated with TG c.5686+1delG is comparable to that seen with single nucleotide substitutions at the same site.


Assuntos
Hipotireoidismo Congênito , Doenças Fetais , Bócio , Hipotireoidismo Congênito/genética , Eritreia , Feminino , Bócio/genética , Humanos , Mutação , Nucleotídeos , Tireoglobulina/genética
3.
Thyroid ; 32(2): 215-218, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34806438

RESUMO

The sodium-iodide symporter (NIS, SLC5A5) is expressed at the basolateral membrane of the thyroid follicular cell, and facilitates the thyroidal iodide uptake required for thyroid hormone biosynthesis. Biallelic loss-of-function mutations in NIS are a rare cause of dyshormonogenic congenital hypothyroidism. Affected individuals typically exhibit a normally sited, often goitrous thyroid gland, with absent uptake of radioiodine in the thyroid and other NIS-expressing tissues. We report a novel homozygous NIS mutation (c.1067 C>T, p.S356F) in four siblings from a consanguineous Indian kindred, presenting with significant hypothyroidism. Functional characterization of the mutant protein demonstrated impaired plasma membrane localization and cellular iodide transport.


Assuntos
Hipotireoidismo Congênito/genética , Mutação/genética , Simportadores/genética , Feminino , Humanos , Índia , Recém-Nascido
4.
Artigo em Inglês | MEDLINE | ID: mdl-32765423

RESUMO

Neonatal screening in Macedonia detects congenital hypothyroidism (CH) with an incidence of 1 in 1,585, and more than 50% of cases exhibit a normally located gland-in-situ (GIS). Monogenic mutations causing dyshormonogenesis may underlie GIS CH; additionally, a small proportion of thyroid hypoplasia has a monogenic cause, such as TSHR and PAX8 defects. The genetic architecture of Macedonian CH cases has not previously been studied. We recruited screening-detected, non-syndromic GIS CH or thyroid hypoplasia cases (n = 40) exhibiting a spectrum of biochemical thyroid dysfunction ranging from severe permanent to mild transient CH and including 11 familial cases. Cases were born at term, with birth weight >3,000 g, and thyroid morphologies included goiter (n = 11), thyroid hypoplasia (n = 6), and apparently normal-sized thyroid. A comprehensive, phenotype-driven, Sanger sequencing approach was used to identify genetic mutations underlying CH, by sequentially screening known dyshormonogenesis-associated genes and TSHR in GIS cases and TSHR and PAX8 in cases with thyroid hypoplasia. Potentially pathogenic variants were identified in 14 cases, of which four were definitively causative; we also detected digenic variants in three cases. Seventeen variants (nine novel) were identified in TPO (n = 4), TG (n = 3), TSHR (n = 4), DUOX2 (n = 4), and PAX8 (n = 2). No mutations were detected in DUOXA2, NIS, IYD, and SLC26A7. The relatively low mutation frequency suggests that factors other than recognized monogenic causes (oligogenic variants, environmental factors, or novel genes) may contribute to GIS CH in this region. Future non-hypothesis-driven, next-generation sequencing studies are required to confirm these findings.


Assuntos
Hipotireoidismo Congênito/diagnóstico , Mutação , Fator de Transcrição PAX8/genética , Receptores da Tireotropina/genética , Disgenesia da Tireoide/diagnóstico , Criança , Pré-Escolar , Hipotireoidismo Congênito/epidemiologia , Hipotireoidismo Congênito/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Recém-Nascido , Fenótipo , República da Macedônia do Norte/epidemiologia , Disgenesia da Tireoide/epidemiologia , Disgenesia da Tireoide/genética
5.
Horm Res Paediatr ; 92(5): 340-344, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31707387

RESUMO

INTRODUCTION: Heterozygous mutations or haploinsufficiency of NKX2-1 are associated with the brain-lung-thyroid syndrome incorporating primary hypothyroidism, respiratory distress, and neurological disturbances. CASE PRESENTATION: We report a patient presenting in the neonatal period with multiple pituitary hormone deficiency including central hypothyroidism and hypoadrenalism, growth hormone deficiency, undetectable gonadotrophins, and a small anterior pituitary on MRI. CGH microarray revealed haploinsufficiency for NKX2.1 and during subsequent follow-up, she has exhibited the classic triad of brain-lung-thyroid syndrome with undetectable tissue on thyroid ultrasonography. Whilst the role of NKX2-1 is well described in murine pituitary development, this report constitutes the first description of multiple pituitary dysfunction in humans associated with the syndrome and haploinsufficiency NKX2-1. CONCLUSION: The report highlights a potential need for pituitary screening in patients with established brain-lung-thyroid syndrome and implicates NKX2.1 in human pituitary disease.


Assuntos
Atetose/genética , Coreia/genética , Hipotireoidismo Congênito/genética , Haploinsuficiência , Doenças da Hipófise/genética , Síndrome do Desconforto Respiratório do Recém-Nascido/genética , Fator Nuclear 1 de Tireoide/genética , Animais , Atetose/diagnóstico por imagem , Coreia/diagnóstico por imagem , Hipotireoidismo Congênito/diagnóstico por imagem , Feminino , Humanos , Lactente , Camundongos , Doenças da Hipófise/diagnóstico por imagem , Síndrome do Desconforto Respiratório do Recém-Nascido/diagnóstico por imagem
6.
Thyroid ; 29(6): 790-801, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31044655

RESUMO

Background: The etiology, course, and most appropriate management of borderline congenital hypothyroidism (CH) are poorly defined, such that the optimal threshold for diagnosis with bloodspot screening thyrotropin (bsTSH) measurement remains controversial. Dual oxidase 2 (DUOX2) mutations may initially cause borderline elevation of bsTSH, which later evolves into significant hypothyroidism on venous blood measurement. It was hypothesized that mutations in both DUOX2 and its accessory protein DUOXA2 may occur frequently, even in patients with borderline bsTSH elevation, such that higher diagnostic thresholds in bsTSH screening may fail to detect such cases, with consequent risk of undiagnosed neonatal hypothyroidism of sufficient magnitude to require thyroxine therapy. This study aimed to investigate the frequency and characteristics of DUOX2 and DUOXA2 mutations in a borderline CH cohort. Methods: A cross-sectional study of patients with borderline CH was undertaken at Great Ormond Street Hospital, a tertiary British pediatric center. DUOX2 was sequenced in 52 patients with a bsTSH of 6-19.9 mIU/L, venous TSH of >25 mIU/L, and eutopic thyroid gland in situ. DUOXA2 was sequenced in DUOX2 mutation-negative cases, and novel DUOXA2 mutations were functionally characterized. Results: A total of 26 (50%) patients harbored likely pathogenic mutations in DUOX2 (n = 20; 38%) or DUOXA2 (n = 6; 12%), including novel gene variants (DUOX2, n = 3; DUOXA2, n = 7). Two recurrent DUOX2 mutations (p.Q570L, p.F966Sfs*29) occurred frequently in population databases (MAF ≥0.01). Despite bsTSH being <10 mIU/L in 46% of DUOX2 and DUOXA2 mutation-positive cases, venous free thyroxine levels in these patients were in the moderate CH range (M = 9.3 pmol/L, range <3.9-15.8 pmol/L), Conclusions: Targeted DUOX2 and DUOXA2 sequencing in a borderline CH cohort has a high diagnostic yield. These findings might argue for a lowering of bsTSH thresholds, but follow-up studies are required to assess whether cases with borderline bsTSH harboring DUOX2/DUOXA2 mutations will benefit from an early diagnosis and subsequent levothyroxine treatment.


Assuntos
Hipotireoidismo Congênito/diagnóstico , Hipotireoidismo Congênito/genética , Oxidases Duais/genética , Proteínas de Membrana/genética , Estudos Transversais , Feminino , Humanos , Recém-Nascido , Masculino , Mutação , Triagem Neonatal , Reino Unido
7.
JCI Insight ; 3(20)2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30333321

RESUMO

Defects in genes mediating thyroid hormone biosynthesis result in dyshormonogenic congenital hypothyroidism (CH). Here, we report homozygous truncating mutations in SLC26A7 in 6 unrelated families with goitrous CH and show that goitrous hypothyroidism also occurs in Slc26a7-null mice. In both species, the gene is expressed predominantly in the thyroid gland, and loss of function is associated with impaired availability of iodine for thyroid hormone synthesis, partially corrected in mice by iodine supplementation. SLC26A7 is a member of the same transporter family as SLC26A4 (pendrin), an anion exchanger with affinity for iodide and chloride (among others), whose gene mutations cause congenital deafness and dyshormonogenic goiter. However, in contrast to pendrin, SLC26A7 does not mediate cellular iodide efflux and hearing in affected individuals is normal. We delineate a hitherto unrecognized role for SLC26A7 in thyroid hormone biosynthesis, for which the mechanism remains unclear.


Assuntos
Antiporters/genética , Hipotireoidismo Congênito/genética , Bócio/genética , Transportadores de Sulfato/genética , Adulto , Animais , Criança , Pré-Escolar , Códon sem Sentido , Hipotireoidismo Congênito/diagnóstico , Análise Mutacional de DNA , Feminino , Bócio/congênito , Bócio/diagnóstico , Células HEK293 , Homozigoto , Humanos , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Linhagem , Glândula Tireoide/patologia , Sequenciamento do Exoma
8.
Clin Endocrinol (Oxf) ; 89(6): 813-823, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30086211

RESUMO

OBJECTIVE: Loss-of-function mutations in IGSF1 result in X-linked central congenital hypothyroidism (CeCH), occurring in isolation or associated with additional pituitary hormone deficits. Intrafamilial penetrance is highly variable and a minority of heterozygous females are also affected. We identified and characterized a novel IGSF1 mutation and investigated its associated phenotypes in a large Irish kindred. DESIGN, PATIENTS AND MEASUREMENTS: A novel hemizygous IGSF1 mutation was identified by direct sequencing in two brothers with CeCH, and its functional consequences were characterized in vitro. Genotype-phenotype correlations were investigated in the wider kindred. RESULTS: The mutant IGSF1 protein (c.2318T > C, p.L773P) exhibited decreased plasma membrane expression in vitro due to impaired trafficking from the endoplasmic reticulum. Ten hemizygous males and 11 heterozygous females exhibited characteristic endocrine deficits. Ireland operates a TSH-based CH screening programme, which does not detect CeCH; therefore, genetic ascertainment preceded biochemical diagnosis of moderate CH in five of seven boys as well as their 75-year-old grandfather. Clinical features potentially attributable to hypothyroidism were variable; normal free T3 (FT3) and low/low normal reverse T3 (rT3) concentrations suggested that preferential deiodination of FT4 to FT3 may help maintain tissue euthyroidism in some individuals. However, neonatal jaundice, delayed speech or growth, and obesity were observed in seven subjects in whom diagnosis was delayed. CONCLUSIONS: As observed with other IGSF1 mutations, p.L773P results in variably penetrant IGSF1 deficiency syndrome. Our observations emphasize the need for multi-generation genetic ascertainment in affected families, especially where TSH-based CH screening programmes may fail to detect CeCH at birth.


Assuntos
Hipotireoidismo Congênito/genética , Imunoglobulinas/genética , Proteínas de Membrana/genética , Mutação/genética , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Hipotireoidismo Congênito/sangue , Hipotireoidismo Congênito/diagnóstico , Feminino , Humanos , Lactente , Irlanda , Masculino , Pessoa de Meia-Idade , Tiroxina/sangue , Tri-Iodotironina/sangue , Adulto Jovem
9.
Artigo em Inglês | MEDLINE | ID: mdl-28620499

RESUMO

In the absence of maternal thyroid disease or iodine deficiency, fetal goitre is rare and usually attributable to dyshormonogenesis, for which genetic ascertainment is not always undertaken in the UK. Mechanical complications include tracheal and oesophageal compression with resultant polyhydramnios, malpresentation at delivery and neonatal respiratory distress. We report an Indian kindred in which the proband (first-born son) had congenital hypothyroidism (CH) without obvious neonatal goitre. His mother's second pregnancy was complicated by fetal hypothyroid goitre and polyhydramnios, prompting amniotic fluid drainage and intraamniotic therapy (with liothyronine, T3 and levothyroxine, T4). Sadly, intrauterine death occurred at 31 weeks. Genetic studies in the proband demonstrated compound heterozygous novel (c.5178delT, p.A1727Hfs*26) and previously described (c.7123G > A, p.G2375R) thyroglobulin (TG) mutations which are the likely cause of fetal goitre in the deceased sibling. TG mutations rarely cause fetal goitre, and management remains controversial due to the potential complications of intrauterine therapy however an amelioration in goitre size may be achieved with intraamniotic T4, and intraamniotic T3/T4 combination has achieved a favourable outcome in one case. A conservative approach, with surveillance, elective delivery and commencement of levothyroxine neonatally may also be justified, although intubation may be required post delivery for respiratory obstruction. Our observations highlight the lethality which may be associated with fetal goitre. Additionally, although this complication may recur in successive pregnancies, our case highlights the possibility of discordance for fetal goitre in siblings harbouring the same dyshormonogenesis-associated genetic mutations. Genetic ascertainment may facilitate prenatal diagnosis and assist management in familial cases. LEARNING POINTS: CH due to biallelic, loss-of-function TG mutations is well-described and readily treatable in childhood however mechanical complications from associated fetal goitre may include polyhydramnios, neonatal respiratory compromise and neck hyperextension with dystocia complicating delivery.CH due to TG mutations may manifest with variable phenotypes, even within the same kindred.Treatment options for hypothyroid dyshormogenic fetal goitre in a euthyroid mother include intraamniotic thyroid hormone replacement in cases with polyhydramnios or significant tracheal obstruction. Alternatively, cases may be managed conservatively with radiological surveillance, elective delivery and neonatal levothyroxine treatment, although intubation and ventilation may be required to support neonatal respiratory compromise.Genetic ascertainment in such kindreds may enable prenatal diagnosis and anticipatory planning for antenatal management of further affected offspring.

10.
J Allergy Clin Immunol ; 139(2): 634-642.e5, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27522155

RESUMO

BACKGROUND: Signaling through the T-cell receptor (TCR) is critical for T-cell development and function. Linker for activation of T cells (LAT) is a transmembrane adaptor signaling molecule that is part of the TCR complex and essential for T-cell development, as demonstrated by LAT-deficient mice, which show a complete lack of peripheral T cells. OBJECTIVE: We describe a pedigree affected by a severe combined immunodeficiency phenotype with absent T cells and normal B-cell and natural killer cell numbers. A novel homozygous frameshift mutation in the gene encoding for LAT was identified in this kindred. METHODS: Genetic, molecular, and functional analyses were used to identify and characterize the LAT defect. Clinical and immunologic analysis of patients was also performed and reported. RESULTS: Homozygosity mapping was used to identify potential defective genes. Sanger sequencing of the LAT gene showed a mutation that resulted in a premature stop codon and protein truncation leading to complete loss of function and loss of expression of LAT in the affected family members. We also demonstrate loss of LAT expression and lack of TCR signaling restoration in LAT-deficient cell lines reconstituted with a synthetic LAT gene bearing this severe combined immunodeficiency mutation. CONCLUSION: For the first time, the results of this study show that inherited LAT deficiency should be considered in patients with combined immunodeficiency with T-cell abnormalities.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Membrana/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Deleção de Sequência/genética , Imunodeficiência Combinada Severa/genética , Linfócitos T/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Apoptose , Sinalização do Cálcio/genética , Diferenciação Celular , Consanguinidade , Feminino , Genótipo , Homozigoto , Humanos , Células Jurkat , Ativação Linfocitária , Masculino , Proteínas de Membrana/genética , Paquistão , Linhagem , Receptores de Antígenos de Linfócitos T/genética , Transgenes/genética
11.
J Clin Endocrinol Metab ; 101(12): 4521-4531, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27525530

RESUMO

CONTEXT: Lower TSH screening cutoffs have doubled the ascertainment of congenital hypothyroidism (CH), particularly cases with a eutopically located gland-in-situ (GIS). Although mutations in known dyshormonogenesis genes or TSHR underlie some cases of CH with GIS, systematic screening of these eight genes has not previously been undertaken. OBJECTIVE: Our objective was to evaluate the contribution and molecular spectrum of mutations in eight known causative genes (TG, TPO, DUOX2, DUOXA2, SLC5A5, SLC26A4, IYD, and TSHR) in CH cases with GIS. Patients, Design, and Setting: We screened 49 CH cases with GIS from 34 ethnically diverse families, using next-generation sequencing. Pathogenicity of novel mutations was assessed in silico. PATIENTS, DESIGN, AND SETTING: We screened 49 CH cases with GIS from 34 ethnically diverse families, using next-generation sequencing. Pathogenicity of novel mutations was assessed in silico. RESULTS: Twenty-nine cases harbored likely disease-causing mutations. Monogenic defects (19 cases) most commonly involved TG (12), TPO (four), DUOX2 (two), and TSHR (one). Ten cases harbored triallelic (digenic) mutations: TG and TPO (one); SLC26A4 and TPO (three), and DUOX2 and TG (six cases). Novel variants overall included 15 TG, six TPO, and three DUOX2 mutations. Genetic basis was not ascertained in 20 patients, including 14 familial cases. CONCLUSIONS: The etiology of CH with GIS remains elusive, with only 59% attributable to mutations in TSHR or known dyshormonogenesis-associated genes in a cohort enriched for familial cases. Biallelic TG or TPO mutations most commonly underlie severe CH. Triallelic defects are frequent, mandating future segregation studies in larger kindreds to assess their contribution to variable phenotype. A high proportion (∼41%) of unsolved or ambiguous cases suggests novel genetic etiologies that remain to be elucidated.


Assuntos
Autoantígenos/genética , Hipotireoidismo Congênito/genética , Iodeto Peroxidase/genética , Proteínas de Ligação ao Ferro/genética , Receptores da Tireotropina/genética , Tireoglobulina/genética , Humanos , Mutação , Linhagem , Fenótipo
13.
Nat Genet ; 47(7): 803-8, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26005867

RESUMO

Pain perception has evolved as a warning mechanism to alert organisms to tissue damage and dangerous environments. In humans, however, undesirable, excessive or chronic pain is a common and major societal burden for which available medical treatments are currently suboptimal. New therapeutic options have recently been derived from studies of individuals with congenital insensitivity to pain (CIP). Here we identified 10 different homozygous mutations in PRDM12 (encoding PRDI-BF1 and RIZ homology domain-containing protein 12) in subjects with CIP from 11 families. Prdm proteins are a family of epigenetic regulators that control neural specification and neurogenesis. We determined that Prdm12 is expressed in nociceptors and their progenitors and participates in the development of sensory neurons in Xenopus embryos. Moreover, CIP-associated mutants abrogate the histone-modifying potential associated with wild-type Prdm12. Prdm12 emerges as a key factor in the orchestration of sensory neurogenesis and may hold promise as a target for new pain therapeutics.


Assuntos
Proteínas de Transporte/genética , Proteínas do Tecido Nervoso/genética , Percepção da Dor , Animais , Células COS , Proteínas de Transporte/metabolismo , Chlorocebus aethiops , Consanguinidade , Feminino , Estudos de Associação Genética , Neuropatias Hereditárias Sensoriais e Autônomas/genética , Humanos , Masculino , Mutação , Proteínas do Tecido Nervoso/metabolismo , Neurogênese , Nociceptores/metabolismo , Insensibilidade Congênita à Dor/genética , Linhagem , Polimorfismo de Nucleotídeo Único , Xenopus laevis
14.
J Neurosci ; 35(20): 7674-81, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25995458

RESUMO

The importance of NaV1.7 (encoded by SCN9A) in the regulation of pain sensing is exemplified by the heterogeneity of clinical phenotypes associated with its mutation. Gain-of-function mutations are typically pain-causing and have been associated with inherited erythromelalgia (IEM) and paroxysmal extreme pain disorder (PEPD). IEM is usually caused by enhanced NaV1.7 channel activation, whereas mutations that alter steady-state fast inactivation often lead to PEPD. In contrast, nonfunctional mutations in SCN9A are known to underlie congenital insensitivity to pain (CIP). Although well documented, the correlation between SCN9A genotypes and clinical phenotypes is still unclear. Here we report three families with novel SCN9A mutations. In a multiaffected dominant family with IEM, we found the heterozygous change L245 V. Electrophysiological characterization showed that this mutation did not affect channel activation but instead resulted in incomplete fast inactivation and a small hyperpolarizing shift in steady-state slow inactivation, characteristics more commonly associated with PEPD. In two compound heterozygous CIP patients, we found mutations that still retained functionality of the channels, with two C-terminal mutations (W1775R and L1831X) exhibiting a depolarizing shift in channel activation. Two mutations (A1236E and L1831X) resulted in a hyperpolarizing shift in steady-state fast inactivation. To our knowledge, these are the first descriptions of mutations with some retained channel function causing CIP. This study emphasizes the complex genotype-phenotype correlations that exist for SCN9A and highlights the C-terminal cytoplasmic region of NaV1.7 as a critical region for channel function, potentially facilitating analgesic drug development studies.


Assuntos
Eritromelalgia/genética , Ativação do Canal Iônico , Mutação de Sentido Incorreto , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Insensibilidade Congênita à Dor/genética , Dor/genética , Reto/anormalidades , Criança , Eritromelalgia/metabolismo , Feminino , Células HEK293 , Humanos , Masculino , Canal de Sódio Disparado por Voltagem NAV1.7/química , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Dor/metabolismo , Insensibilidade Congênita à Dor/metabolismo , Linhagem , Fenótipo , Estrutura Terciária de Proteína , Reto/metabolismo
15.
Nat Genet ; 43(11): 1147-53, 2011 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-21983783

RESUMO

Autosomal recessive primary microcephaly (MCPH) is characterized by a substantial reduction in prenatal human brain growth without alteration of the cerebral architecture and is caused by biallelic mutations in genes coding for a subset of centrosomal proteins. Although at least three of these proteins have been implicated in centrosome duplication, the nature of the centrosome dysfunction that underlies the neurodevelopmental defect in MCPH is unclear. Here we report a homozygous MCPH-causing mutation in human CEP63. CEP63 forms a complex with another MCPH protein, CEP152, a conserved centrosome duplication factor. Together, these two proteins are essential for maintaining normal centrosome numbers in cells. Using super-resolution microscopy, we found that CEP63 and CEP152 co-localize in a discrete ring around the proximal end of the parental centriole, a pattern specifically disrupted in CEP63-deficient cells derived from patients with MCPH. This work suggests that the CEP152-CEP63 ring-like structure ensures normal neurodevelopment and that its impairment particularly affects human cerebral cortex growth.


Assuntos
Centríolos/metabolismo , Microcefalia/metabolismo , Cromossomos Humanos Par 3 , Feminino , Humanos , Masculino , Microcefalia/genética , Linhagem
16.
Am J Hum Genet ; 88(5): 523-35, 2011 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-21529752

RESUMO

We investigated three families whose offspring had extreme microcephaly at birth and profound mental retardation. Brain scans and postmortem data showed that affected individuals had brains less than 10% of expected size (≤10 standard deviation) and that in addition to a massive reduction in neuron production they displayed partially deficient cortical lamination (microlissencephaly). Other body systems were apparently unaffected and overall growth was normal. We found two distinct homozygous mutations of NDE1, c.83+1G>T (p.Ala29GlnfsX114) in a Turkish family and c.684_685del (p.Pro229TrpfsX85) in two families of Pakistani origin. Using patient cells, we found that c.83+1G>T led to the use of a novel splice site and to a frameshift after NDE1 exon 2. Transfection of tagged NDE1 constructs showed that the c.684_685del mutation resulted in a NDE1 that was unable to localize to the centrosome. By staining a patient-derived cell line that carried the c.83+1G>T mutation, we found that this endogeneously expressed mutated protein equally failed to localize to the centrosome. By examining human and mouse embryonic brains, we determined that NDE1 is highly expressed in neuroepithelial cells of the developing cerebral cortex, particularly at the centrosome. We show that NDE1 accumulates on the mitotic spindle of apical neural precursors in early neurogenesis. Thus, NDE1 deficiency causes both a severe failure of neurogenesis and a deficiency in cortical lamination. Our data further highlight the importance of the centrosome in multiple aspects of neurodevelopment.


Assuntos
Proteínas de Ciclo Celular/genética , Centrossomo/metabolismo , Córtex Cerebral/embriologia , Proteínas Associadas aos Microtúbulos/genética , Neurogênese , Animais , Córtex Cerebral/crescimento & desenvolvimento , Pré-Escolar , Análise Mutacional de DNA , Células Epiteliais/metabolismo , Éxons , Feminino , Ligação Genética , Células HeLa , Homozigoto , Humanos , Lactente , Masculino , Camundongos , Microcefalia/genética , Mutação , Células-Tronco Neurais/metabolismo , Neurônios , Fenótipo , Gravidez , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transfecção
17.
J Med Genet ; 48(2): 131-5, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20978020

RESUMO

BACKGROUND: Nerve growth factor ß (NGFß) and tyrosine kinase receptor type A (TRKA) are a well studied neurotrophin/receptor duo involved in neuronal survival and differentiation. The only previously reported hereditary sensory neuropathy caused by an NGF mutation, c.661C>T (HSAN5), and the pathology caused by biallelic mutations in the TRKA gene (NTRK1) (HSAN4), share only some clinical features. A consanguineous Arab family, where five of the six children were completely unable to perceive pain, were mentally retarded, did not sweat, could not discriminate temperature, and had a chronic immunodeficiency, is reported here. The condition is linked to a new homozygous mutation in the NGF gene, c.[680C>A]+[681_682delGG]. METHODS: Genetic linkage and standard sequencing techniques were used to identify the causative gene. Using wild-type or mutant over-expression constructs transfected into PC12 and COS-7 cells, the cellular and molecular consequences of the mutations were investigated. RESULTS: The mutant gene produced a precursor protein V232fs that was unable to differentiate PC12 cells. V232fs was not secreted from cells as mature NGFß. CONCLUSIONS: Both the clinical and cellular data suggest that the c.[680C>A]+[681_682delGG] NGF mutation is a functional null. The HSAN5 phenotype is extended to encompass HSAN4-like characteristics. It is concluded that the HSAN4 and HSAN5 phenotypes are parts of a phenotypic spectrum caused by changes in the NGF/TRKA signalling pathway.


Assuntos
Neuropatias Hereditárias Sensoriais e Autônomas/genética , Neuropatias Hereditárias Sensoriais e Autônomas/patologia , Fator de Crescimento Neural/genética , Animais , Sequência de Bases , Western Blotting , Células COS , Chlorocebus aethiops , Mapeamento Cromossômico , Ensaio de Imunoadsorção Enzimática , Genótipo , Humanos , Dados de Sequência Molecular , Mutação/genética , Células PC12 , Linhagem , Ratos , Receptores Proteína Tirosina Quinases/genética , Receptor trkA/genética , Análise de Sequência de DNA
18.
Nat Genet ; 42(11): 1010-4, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20890279

RESUMO

Autosomal recessive primary microcephaly (MCPH) is a disorder of neurodevelopment resulting in a small brain. We identified WDR62 as the second most common cause of MCPH after finding homozygous missense and frame-shifting mutations in seven MCPH families. In human cell lines, we found that WDR62 is a spindle pole protein, as are ASPM and STIL, the MCPH7 and MCHP7 proteins. Mutant WDR62 proteins failed to localize to the mitotic spindle pole. In human and mouse embryonic brain, we found that WDR62 expression was restricted to neural precursors undergoing mitosis. These data lend support to the hypothesis that the exquisite control of the cleavage furrow orientation in mammalian neural precursor cell mitosis, controlled in great part by the centrosomes and spindle poles, is critical both in causing MCPH when perturbed and, when modulated, generating the evolutionarily enlarged human brain.


Assuntos
Microcefalia/genética , Proteínas do Tecido Nervoso/genética , Fuso Acromático/genética , Animais , Encéfalo/anatomia & histologia , Proteínas de Ciclo Celular , Mapeamento Cromossômico , Éxons/genética , Família , Feminino , Mutação da Fase de Leitura , Genes Recessivos , Células HeLa/citologia , Homozigoto , Humanos , Masculino , Camundongos , Mutação de Sentido Incorreto , Análise de Sequência com Séries de Oligonucleotídeos/métodos
19.
J Med Genet ; 47(11): 769-70, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20679666

RESUMO

The authors report the unexpected finding of three different nonsense mutations in two unrelated individuals with a diagnosis of autosomal recessive primary microcephaly. In each case one phenotypically normal parent was found to carry two of the nonsense mutations, presumably in cis. This finding of 'triple pathogenic mutations' is of unknown incidence but has significant implication for genetic counselling. A failure to detect all three mutations could result in both false positive and false negative diagnoses in other family members. Both of these potential problems can be avoided by always genotyping the parents.


Assuntos
Microcefalia/genética , Mutação , Proteínas do Tecido Nervoso/genética , Genes Recessivos , Humanos , Deficiência Intelectual/complicações , Microcefalia/complicações
20.
Hum Mutat ; 31(9): E1670-86, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20635406

RESUMO

SCN9Aencodes the voltage-gated sodium channel Na(v)1.7, a protein highly expressed in pain-sensing neurons. Mutations in SCN9A cause three human pain disorders: bi-allelic loss of function mutations result in Channelopathy-associated Insensitivity to Pain (CIP), whereas activating mutations cause severe episodic pain in Paroxysmal Extreme Pain Disorder (PEPD) and Primary Erythermalgia (PE). To date, all mutations in SCN9A that cause a complete inability to experience pain are protein truncating and presumably lead to no protein being produced. Here, we describe the identification and functional characterization of two novel non-truncating mutations in families with CIP: a homozygously-inherited missense mutation found in a consanguineous Israeli Bedouin family (Na(v)1.7-R896Q) and a five amino acid in-frame deletion found in a sporadic compound heterozygote (Na(v)1.7-DeltaR1370-L1374). Both of these mutations map to the pore region of the Na(v)1.7 sodium channel. Using transient transfection of PC12 cells we found a significant reduction in membrane localization of the mutant protein compared to the wild type. Furthermore, voltage clamp experiments of mutant-transfected HEK293 cells show a complete loss of function of the sodium channel, consistent with the absence of pain phenotype. In summary, this study has identified critical amino acids needed for the normal subcellular localization and function of Na(v)1.7.


Assuntos
Mutação de Sentido Incorreto/genética , Insensibilidade Congênita à Dor/genética , Fases de Leitura/genética , Deleção de Sequência/genética , Canais de Sódio/genética , Animais , Membrana Celular/metabolismo , Análise Mutacional de DNA , Fenômenos Eletrofisiológicos , Etnicidade/genética , Feminino , Células HEK293 , Humanos , Israel , Masculino , Proteínas Mutantes/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.7 , Células PC12 , Linhagem , Ratos , Transfecção , Reino Unido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...