Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Chem Biol ; 20(3): 365-372, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37828400

RESUMO

Stimulator of interferon genes (STING) is a dimeric transmembrane adapter protein that plays a key role in the human innate immune response to infection and has been therapeutically exploited for its antitumor activity. The activation of STING requires its high-order oligomerization, which could be induced by binding of the endogenous ligand, cGAMP, to the cytosolic ligand-binding domain. Here we report the discovery through functional screens of a class of compounds, named NVS-STGs, that activate human STING. Our cryo-EM structures show that NVS-STG2 induces the high-order oligomerization of human STING by binding to a pocket between the transmembrane domains of the neighboring STING dimers, effectively acting as a molecular glue. Our functional assays showed that NVS-STG2 could elicit potent STING-mediated immune responses in cells and antitumor activities in animal models.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Membrana , Animais , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Bioensaio , Citosol , Imunidade Inata , Ligantes , Proteínas de Membrana/metabolismo
2.
Nat Commun ; 13(1): 930, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177623

RESUMO

The Hippo/YAP pathway controls cell proliferation through sensing physical and spatial organization of cells. How cell-cell contact is sensed by Hippo signaling is poorly understood. Here, we identified the cell adhesion molecule KIRREL1 as an upstream positive regulator of the mammalian Hippo pathway. KIRREL1 physically interacts with SAV1 and recruits SAV1 to cell-cell contact sites. Consistent with the hypothesis that KIRREL1-mediated cell adhesion suppresses YAP activity, knockout of KIRREL1 increases YAP activity in neighboring cells. Analyzing pan-cancer CRISPR proliferation screen data reveals KIRREL1 as the top plasma membrane protein showing strong correlation with known Hippo regulators, highlighting a critical role of KIRREL1 in regulating Hippo signaling and cell proliferation. During liver regeneration in mice, KIRREL1 is upregulated, and its genetic ablation enhances hepatic YAP activity, hepatocyte reprogramming and biliary epithelial cell proliferation. Our data suggest that KIRREL1 functions as a feedback regulator of the mammalian Hippo pathway through sensing cell-cell interaction and recruiting SAV1 to cell-cell contact sites.


Assuntos
Comunicação Celular , Proteínas de Ciclo Celular/metabolismo , Proteínas de Membrana/metabolismo , Adulto , Idoso de 80 Anos ou mais , Animais , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Retroalimentação Fisiológica , Feminino , Técnicas de Inativação de Genes , Células HEK293 , Hepatócitos , Via de Sinalização Hippo , Humanos , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Proteínas de Sinalização YAP/metabolismo
3.
Transl Psychiatry ; 10(1): 29, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-32066662

RESUMO

CACNA1I, a schizophrenia risk gene, encodes a subtype of voltage-gated T-type calcium channel CaV3.3. We previously reported that a patient-derived missense de novo mutation (R1346H) of CACNA1I impaired CaV3.3 channel function. Here, we generated CaV3.3-RH knock-in animals, along with mice lacking CaV3.3, to investigate the biological impact of R1346H (RH) variation. We found that RH mutation altered cellular excitability in the thalamic reticular nucleus (TRN), where CaV3.3 is abundantly expressed. Moreover, RH mutation produced marked deficits in sleep spindle occurrence and morphology throughout non-rapid eye movement (NREM) sleep, while CaV3.3 haploinsufficiency gave rise to largely normal spindles. Therefore, mice harboring the RH mutation provide a patient derived genetic model not only to dissect the spindle biology but also to evaluate the effects of pharmacological reagents in normalizing sleep spindle deficits. Importantly, our analyses highlighted the significance of characterizing individual spindles and strengthen the inferences we can make across species over sleep spindles. In conclusion, this study established a translational link between a genetic allele and spindle deficits during NREM observed in schizophrenia patients, representing a key step toward testing the hypothesis that normalizing spindles may be beneficial for schizophrenia patients.


Assuntos
Canais de Cálcio Tipo T , Esquizofrenia , Animais , Eletroencefalografia , Humanos , Camundongos , Esquizofrenia/genética , Sono , Sono REM
4.
Endocrinology ; 160(12): 2849-2860, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31556942

RESUMO

The gut-pancreas axis plays a key role in the regulation of glucose homeostasis and may be therapeutically exploited to treat not only type 2 diabetes but also hypoglycemia and hyperinsulinemia. We identify a novel enteroendocrine cell type expressing the peptide hormone urotensin 2B (UTS2B). UTS2B inhibits glucagon-like peptide-1 (GLP-1) secretion in mouse intestinal crypts and organoids, not by signaling through its cognate receptor UTS2R but through the activation of the somatostatin receptor (SSTR) 5. Circulating UTS2B concentrations in mice are physiologically regulated during starvation, further linking this peptide hormone to metabolism. Furthermore, administration of UTS2B to starved mice demonstrates that it is capable of regulating blood glucose and plasma concentrations of GLP-1 and insulin in vivo. Altogether, our results identify a novel cellular source of UTS2B in the gut, which acts in a paracrine manner to regulate GLP-1 secretion through SSTR5. These findings uncover a fine-tuning mechanism mediated by a ligand-receptor pair in the regulation of gut hormone secretion, which can potentially be exploited to correct metabolic unbalance caused by overactivation of the gut-pancreas axis.


Assuntos
Células Enteroendócrinas/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Hormônios Peptídicos/metabolismo , Receptores de Somatostatina/metabolismo , Animais , Glucose/metabolismo , Jejuno/citologia , Jejuno/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Comunicação Parácrina
5.
Cell Stem Cell ; 25(1): 39-53.e10, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31080135

RESUMO

Biliary epithelial cells (BECs) form bile ducts in the liver and are facultative liver stem cells that establish a ductular reaction (DR) to support liver regeneration following injury. Liver damage induces periportal LGR5+ putative liver stem cells that can form BEC-like organoids, suggesting that RSPO-LGR4/5-mediated WNT/ß-catenin activity is important for a DR. We addressed the roles of this and other signaling pathways in a DR by performing a focused CRISPR-based loss-of-function screen in BEC-like organoids, followed by in vivo validation and single-cell RNA sequencing. We found that BECs lack and do not require LGR4/5-mediated WNT/ß-catenin signaling during a DR, whereas YAP and mTORC1 signaling are required for this process. Upregulation of AXIN2 and LGR5 is required in hepatocytes to enable their regenerative capacity in response to injury. Together, these data highlight heterogeneity within the BEC pool, delineate signaling pathways involved in a DR, and clarify the identity and roles of injury-induced periportal LGR5+ cells.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Ductos Biliares/patologia , Proteínas de Ciclo Celular/metabolismo , Células Epiteliais/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteína Axina/genética , Proteína Axina/metabolismo , Proteínas de Ciclo Celular/genética , Células Cultivadas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Modelos Animais de Doenças , Humanos , Regeneração Hepática , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Piridinas/toxicidade , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Trombospondinas/genética , Trombospondinas/metabolismo , Via de Sinalização Wnt , Proteínas de Sinalização YAP
6.
FASEB J ; 33(4): 5300-5311, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30681884

RESUMO

Transcriptional and epigenetic regulation is fundamentally involved in initiating and maintaining progression of cellular differentiation. The 2 types of thermogenic adipocytes, brown and beige, are thought to be of different origins but share functionally similar phenotypes. Here, we report that lysine-specific demethylase 2 (LSD2) regulates the expression of genes associated with lineage identity during the differentiation of brown and beige adipogenic progenitors in mice. In HB2 mouse brown preadipocytes, short hairpin RNA-mediated knockdown (KD) of LSD2 impaired formation of lipid droplet-containing adipocytes and down-regulated brown adipogenesis-associated genes. Transcriptomic analysis revealed that myogenesis-associated genes were up-regulated in LSD2-KD cells under adipogenic induction. In addition, loss of LSD2 during later phases of differentiation had no obvious influence on adipogenic traits, suggesting that LSD2 functions during earlier phases of brown adipocyte differentiation. Using adipogenic cells from the brown adipose tissues of LSD2-knockout (KO) mice, we found reduced expression of brown adipogenesis genes, whereas myogenesis genes were not affected. In contrast, when LSD2-KO cells from inguinal white adipose tissues were subjected to beige induction, these cells showed a dramatic rise in myogenic gene expression. Collectively, these results suggest that LSD2 regulates distinct sets of genes during brown and beige adipocyte formation.-Takase, R., Hino, S., Nagaoka, K., Anan, K., Kohrogi, K., Araki, H., Hino, Y., Sakamoto, A., Nicholson, T. B., Chen, T., Nakao, M. Lysine-specific demethylase-2 is distinctively involved in brown and beige adipogenic differentiation.


Assuntos
Tecido Adiposo Marrom/citologia , Tecido Adiposo Marrom/metabolismo , Histona Desmetilases/metabolismo , RNA Interferente Pequeno/metabolismo , Adipogenia/genética , Adipogenia/fisiologia , Animais , Western Blotting , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Células Cultivadas , Imunoprecipitação da Cromatina , Feminino , Histona Desmetilases/genética , Lentivirus/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , PPAR gama/metabolismo , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real
7.
J Biol Chem ; 293(52): 20137-20156, 2018 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-30389787

RESUMO

Myocilin (MYOC) was discovered more than 20 years ago and is the gene whose mutations are most commonly observed in individuals with glaucoma. Despite extensive research efforts, the function of WT MYOC has remained elusive, and how mutant MYOC is linked to glaucoma is unclear. Mutant MYOC is believed to be misfolded within the endoplasmic reticulum, and under normal physiological conditions misfolded MYOC should be retro-translocated to the cytoplasm for degradation. To better understand mutant MYOC pathology, we CRISPR-engineered a rat to have a MYOC Y435H substitution that is the equivalent of the pathological human MYOC Y437H mutation. Using this engineered animal model, we discovered that the chaperone αB-crystallin (CRYAB) is a MYOC-binding partner and that co-expression of these two proteins increases protein aggregates. Our results suggest that the misfolded mutant MYOC aggregates with cytoplasmic CRYAB and thereby compromises protein clearance mechanisms in trabecular meshwork cells, and this process represents the primary mode of mutant MYOC pathology. We propose a model by which mutant MYOC causes glaucoma, and we propose that therapeutic treatment of patients having a MYOC mutation may focus on disrupting the MYOC-CRYAB complexes.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Proteínas do Olho/metabolismo , Glaucoma/metabolismo , Glicoproteínas/metabolismo , Mutação de Sentido Incorreto , Malha Trabecular/metabolismo , Cadeia B de alfa-Cristalina/metabolismo , Substituição de Aminoácidos , Animais , Cristalinas/genética , Cristalinas/metabolismo , Proteínas do Citoesqueleto/genética , Modelos Animais de Doenças , Proteínas do Olho/genética , Feminino , Glaucoma/genética , Glaucoma/patologia , Glicoproteínas/genética , Humanos , Masculino , Camundongos Mutantes , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Ligação Proteica , Ratos Sprague-Dawley , Malha Trabecular/patologia , Cadeia B de alfa-Cristalina/genética
8.
Dev Cell ; 46(4): 426-440.e5, 2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-30057274

RESUMO

The oligodendrocyte lineage is responsible for myelination of the central nervous system. Post-translational modifications are known to regulate oligodendrocyte precursor cell (OPC) differentiation into mature myelinating oligodendrocytes. The role of arginine methylation during oligodendrocyte differentiation and myelination is still poorly understood. We generated mice depleted of PRMT5 in OPCs using Olig2-Cre, and these mice developed severe hypomyelination and died at the third post-natal week. PRMT5-deficient cells have lower levels of PDGFRα at the plasma membrane due to increased degradation by the Cbl E3 ligase. Mechanistically, the loss of arginine methylation at R554 of the PDGFRα intracellular domain unmasks a Cbl binding site at Y555. We observed the progressive decrease in PRMT5 during oligodendrocyte differentiation, and we show that one role of this decrease is to downregulate growth signals provided by PDGFRα to initiate oligodendrocyte differentiation and myelination. More broadly, the inhibition of PRMT5 may be used therapeutically to manipulate PDGFRα bioavailability.


Assuntos
Diferenciação Celular/fisiologia , Oligodendroglia/citologia , Proteína-Arginina N-Metiltransferases/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células Cultivadas , Camundongos , Bainha de Mielina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/fisiologia
10.
Nat Cell Biol ; 18(5): 467-79, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27088858

RESUMO

LGR4/5 receptors and their cognate RSPO ligands potentiate Wnt/ß-catenin signalling and promote proliferation and tissue homeostasis in epithelial stem cell compartments. In the liver, metabolic zonation requires a Wnt/ß-catenin signalling gradient, but the instructive mechanism controlling its spatiotemporal regulation is not known. We have now identified the RSPO-LGR4/5-ZNRF3/RNF43 module as a master regulator of Wnt/ß-catenin-mediated metabolic liver zonation. Liver-specific LGR4/5 loss of function (LOF) or RSPO blockade disrupted hepatic Wnt/ß-catenin signalling and zonation. Conversely, pathway activation in ZNRF3/RNF43 LOF mice or with recombinant RSPO1 protein expanded the hepatic Wnt/ß-catenin signalling gradient in a reversible and LGR4/5-dependent manner. Recombinant RSPO1 protein increased liver size and improved liver regeneration, whereas LGR4/5 LOF caused the opposite effects, resulting in hypoplastic livers. Furthermore, we show that LGR4(+) hepatocytes throughout the lobule contribute to liver homeostasis without zonal dominance. Taken together, our results indicate that the RSPO-LGR4/5-ZNRF3/RNF43 module controls metabolic liver zonation and is a hepatic growth/size rheostat during development, homeostasis and regeneration.


Assuntos
Fígado/citologia , Receptores Acoplados a Proteínas G/metabolismo , Trombospondinas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Animais Recém-Nascidos , Linhagem da Célula , Proliferação de Células , Citocromo P-450 CYP2E1/metabolismo , Deleção de Genes , Hepatócitos/citologia , Hepatócitos/metabolismo , Homeostase , Antígeno Ki-67/metabolismo , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Regeneração Hepática , Tamanho do Órgão , Transdução de Sinais , beta-Galactosidase/metabolismo
11.
PLoS One ; 8(4): e60913, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23637775

RESUMO

Lysine-specific demethylase 1 (Lsd1/Aof2/Kdm1a), the first enzyme with specific lysine demethylase activity to be described, demethylates histone and non-histone proteins and is essential for mouse embryogenesis. Lsd1 interacts with numerous proteins through several different domains, most notably the tower domain, an extended helical structure that protrudes from the core of the protein. While there is evidence that Lsd1-interacting proteins regulate the activity and specificity of Lsd1, the significance and roles of such interactions in developmental processes remain largely unknown. Here we describe a hypomorphic Lsd1 allele that contains two point mutations in the tower domain, resulting in a protein with reduced interaction with known binding partners and decreased enzymatic activity. Mice homozygous for this allele die perinatally due to heart defects, with the majority of animals suffering from ventricular septal defects. Molecular analyses revealed hyperphosphorylation of E-cadherin in the hearts of mutant animals. These results identify a previously unknown role for Lsd1 in heart development, perhaps partly through the control of E-cadherin phosphorylation.


Assuntos
Alelos , Cardiopatias Congênitas/genética , Oxirredutases N-Desmetilantes/genética , Animais , Caderinas/metabolismo , Modelos Animais de Doenças , Ativação Enzimática , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Cardiopatias Congênitas/metabolismo , Cardiopatias Congênitas/patologia , Comunicação Interventricular/genética , Comunicação Interventricular/metabolismo , Comunicação Interventricular/patologia , Histona Desmetilases , Homozigoto , Camundongos , Camundongos Knockout , Oxirredutases N-Desmetilantes/metabolismo , Fosforilação , Mutação Puntual , Gravidez , Ligação Proteica
13.
Cell Res ; 2011 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-22143567

RESUMO

Lysine-specific demethylase 1 (LSD1/AOF2/KDM1A), the first enzyme with specific lysine demethylase activity to be described, demethylates histone and non-histone proteins and is essential for mouse embryogenesis. LSD1 interacts with numerous proteins through several different domains, most notably the tower domain, an extended helical structure that protrudes from the core of the protein. While there is evidence that LSD1-interacting proteins regulate the activity and specificity of LSD1, the significance and roles of such interactions in developmental processes remain largely unknown. Here we describe a hypomorphic LSD1 allele that contains two point mutations in the tower domain, resulting in a protein with reduced interaction with known binding partners and decreased enzymatic activity. Mice homozygous for this allele die perinatally due to heart defects, with the majority of animals suffering from ventricular septal defects. Transcriptional profiling revealed altered expression of a limited subset of genes in the hearts. This includes an increase in calmodulin kinase (CK) 2ß, the regulatory subunit of the CK2 kinase, which correlates with E-cadherin hyperphosphorylation. These results identify a previously unknown role for LSD1 in heart development, perhaps partly through the control of E-cadherin phosphorylation.Cell Research advance online publication 6 December 2011; doi:10.1038/cr.2011.194.

14.
Mol Cell Biol ; 30(11): 2693-707, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20351169

RESUMO

Imprinted gene expression corresponds to parental allele-specific DNA CpG methylation and chromatin composition. Histone tail covalent modifications have been extensively studied, but it is not known whether modifications in the histone globular domains can also discriminate between the parental alleles. Using multiplex chromatin immunoprecipitation-single nucleotide primer extension (ChIP-SNuPE) assays, we measured the allele-specific enrichment of H3K79 methylation and H4K91 acetylation along the H19/Igf2 imprinted domain. Whereas H3K79me1, H3K79me2, and H4K91ac displayed a paternal-specific enrichment at the paternally expressed Igf2 locus, H3K79me3 was paternally biased at the maternally expressed H19 locus, including the paternally methylated imprinting control region (ICR). We found that these allele-specific differences depended on CTCF binding in the maternal ICR allele. We analyzed an additional 11 differentially methylated regions (DMRs) and found that, in general, H3K79me3 was associated with the CpG-methylated alleles, whereas H3K79me1, H3K79me2, and H4K91ac enrichment was specific to the unmethylated alleles. Our data suggest that allele-specific differences in the globular histone domains may constitute a layer of the "histone code" at imprinted genes.


Assuntos
Alelos , Impressão Genômica , Histonas/química , Histonas/metabolismo , Acetilação , Animais , Células Cultivadas , Imunoprecipitação da Cromatina/métodos , Ilhas de CpG , Fibroblastos/citologia , Fibroblastos/fisiologia , Código das Histonas , Histona-Lisina N-Metiltransferase , Histonas/genética , Humanos , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos , Camundongos Knockout , Mutação , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
15.
Pharmacol Res ; 60(6): 466-74, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19643181

RESUMO

Post-translational modifications are well-known effectors in DNA damage signaling and epigenetic gene expression. Protein arginine methylation is a covalent modification that results in the addition of methyl groups to the nitrogen atoms of the arginine side chains and is catalyzed by a family of protein arginine methyltransferases (PRMTs). In the past, arginine methylation was mainly observed on abundant proteins such as RNA-binding proteins and histones, but recent advances have revealed a plethora of arginine-methylated proteins implicated in a variety of cellular processes including signal transduction, epigenetic regulation and DNA repair pathways. Herein, we discuss these recent advances, focusing on the role of PRMT1, the major asymmetric arginine methyltransferase, in cellular processes and its link to human diseases.


Assuntos
Metilação de DNA , Cardiopatias/enzimologia , Cardiopatias/fisiopatologia , Neoplasias/enzimologia , Neoplasias/fisiopatologia , Proteína-Arginina N-Metiltransferases/fisiologia , Proteínas Repressoras/fisiologia , Animais , Humanos , Nefropatias/enzimologia , Nefropatias/fisiopatologia , Metilação , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
16.
Epigenetics ; 4(3): 129-32, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19395867

RESUMO

One of the key breakthroughs in the epigenetics/chromatin field in the last several years was the identification of enzymes capable of removing the methyl group from methylated lysines in histone proteins. Lysine-specific demethylase 1 (LSD1) was the first such enzyme identified, which has been shown to demethylate histone H3 on lysine 4 (H3K4) and lysine 9 (H3K9). LSD1 is essential for mammalian development and likely involved in many biological processes. Recent studies show that LSD1 demethylates p53 and Dnmt1 and regulates their cellular functions, indicating that LSD1 fulfills its biological functions by directly acting on both histone and non-histone proteins. LSD1 contains several defined domains and associates with a number of protein complexes. Interacting partners of LSD1 may play key roles in determining/modulating the activity and specificity of LSD1.


Assuntos
Histonas/metabolismo , Lisina/metabolismo , Oxirredutases N-Desmetilantes/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas/metabolismo , Animais , Histona Desmetilases , Humanos , Metilação , Camundongos , Oxirredutases N-Desmetilantes/genética
17.
J Cell Biol ; 177(2): 211-8, 2007 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-17438079

RESUMO

Exchanging the glycophosphatidylinositol (GPI) anchor signal sequence of neural cell adhesion molecule (NCAM) for the signal sequence of carcinoembryonic antigen (CEA) generates a mature protein with NCAM external domains but CEA-like tumorigenic activity. We hypothesized that this resulted from the presence of a functional specificity signal within this sequence and generated CEA/NCAM chimeras to identify this signal. Replacing the residues (GLSAG) 6-10 amino acids downstream of the CEA anchor addition site with the corresponding NCAM residues resulted in GPI-anchored proteins lacking the CEA-like biological functions of integrin modulation and differentiation blockage. Transferring this region from CEA into NCAM in conjunction with the upstream proline (PGLSAG) was sufficient to specify the addition of the CEA anchor. Therefore, this study identifies a novel specificity signal consisting of six amino acids located within the GPI anchor attachment signal, which is necessary and sufficient to specify the addition of a particular functional GPI anchor and, thereby, the ultimate function of the mature protein.


Assuntos
Antígeno Carcinoembrionário/química , Glicosilfosfatidilinositóis/química , Moléculas de Adesão de Célula Nervosa/química , Sequência de Aminoácidos , Animais , Células CHO , Antígeno Carcinoembrionário/genética , Antígeno Carcinoembrionário/metabolismo , Adesão Celular , Diferenciação Celular , Linhagem Celular , Cricetinae , Cricetulus , Fibronectinas/metabolismo , Humanos , Dados de Sequência Molecular , Moléculas de Adesão de Célula Nervosa/genética , Moléculas de Adesão de Célula Nervosa/metabolismo , Ratos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Transfecção
18.
J Cell Biol ; 175(4): 647-59, 2006 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-17101695

RESUMO

The functional specificity conferred by glycophosphatidylinositol (GPI) anchors on certain membrane proteins may arise from their occupancy of specific membrane microdomains. We show that membrane proteins with noninteractive external domains attached to the same carcinoembryonic antigen (CEA) GPI anchor, but not to unrelated neural cell adhesion molecule GPI anchors, colocalize on the cell surface, confirming that the GPI anchor mediates association with specific membrane domains and providing a mechanism for specific signaling. This directed targeting was exploited by coexpressing an external domain-defective protein with a functional protein, both with the CEA GPI anchor. The result was a complete loss of signaling capabilities (through integrin-ECM interaction) and cellular effect (differentiation blockage) of the active protein, which involved an alteration of the size of the microdomains occupied by the active protein. This work clarifies how the GPI anchor can determine protein function, while offering a novel method for its modulation.


Assuntos
Glicosilfosfatidilinositóis/antagonistas & inibidores , Glicosilfosfatidilinositóis/metabolismo , Animais , Anticorpos/imunologia , Células CHO , Antígeno Carcinoembrionário/química , Antígeno Carcinoembrionário/metabolismo , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Cricetinae , Cricetulus , Reagentes de Ligações Cruzadas/farmacologia , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Glicosilfosfatidilinositóis/química , Humanos , Integrinas/metabolismo , Microdomínios da Membrana/efeitos dos fármacos , Proteínas Mutantes/metabolismo , Mioblastos/citologia , Mioblastos/efeitos dos fármacos , Moléculas de Adesão de Célula Nervosa/química , Moléculas de Adesão de Célula Nervosa/metabolismo , Ligação Proteica/efeitos dos fármacos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...