Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FASEB Bioadv ; 5(3): 114-130, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36876296

RESUMO

CK2ß is the non-catalytic modulating part of the S/T-protein kinase CK2. However, the overall function of CK2ß is poorly understood. Here, we report on the identification of 38 new interaction partners of the human CK2ß from lysates of DU145 prostate cancer cells using photo-crosslinking and mass spectrometry, whereby HSP70-1 was identified with high abundance. The KD value of its interaction with CK2ß was determined as 0.57 µM by microscale thermophoresis, this being the first time, to our knowledge, that a KD value of CK2ß with another protein than CK2α or CK2α' was quantified. Phosphorylation studies excluded HSP70-1 as a substrate or activity modulator of CK2, suggesting a CK2 activity independent interaction of HSP70-1 with CK2ß. Co-immunoprecipitation experiments in three different cancer cell lines confirmed the interaction of HSP70-1 with CK2ß in vivo. A second identified CK2ß interaction partner was Rho guanin nucleotide exchange factor 12, indicating an involvement of CK2ß in the Rho-GTPase signal pathway, described here for the first time to our knowledge. This points to a role of CK2ß in the interaction network affecting the organization of the cytoskeleton.

2.
HGG Adv ; 3(3): 100111, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35571680

RESUMO

CSNK2B encodes for casein kinase II subunit beta (CK2ß), the regulatory subunit of casein kinase II (CK2), which is known to mediate diverse cellular pathways. Variants in this gene have been recently identified as a cause of Poirier-Bienvenu neurodevelopmental syndrome (POBINDS), but functional evidence is sparse. Here, we report five unrelated individuals: two of them manifesting POBINDS, while three are identified to segregate a new intellectual disability-craniodigital syndrome (IDCS), distinct from POBINDS. The three IDCS individuals carried two different de novo missense variants affecting the same codon of CSNK2B. Both variants, NP_001311.3; p.Asp32His and NP_001311.3; p.Asp32Asn, lead to an upregulation of CSNK2B expression at transcript and protein level, along with global dysregulation of canonical Wnt signaling. We found impaired interaction of the two key players DVL3 and ß-catenin with mutated CK2ß. The variants compromise the kinase activity of CK2 as evident by a marked reduction of phosphorylated ß-catenin and consequent absence of active ß-catenin inside nuclei of the patient-derived lymphoblastoid cell lines (LCLs). In line with these findings, whole-transcriptome profiling of patient-derived LCLs harboring the NP_001311.3; p.Asp32His variant confirmed a marked difference in expression of genes involved in the Wnt signaling pathway. In addition, whole-phosphoproteome analysis of the LCLs of the same subject showed absence of phosphorylation for 313 putative CK2 substrates, enriched in the regulation of nuclear ß-catenin and transcription of the target genes. Our findings suggest that discrete variants in CSNK2B cause dominant-negative perturbation of the canonical Wnt signaling pathway, leading to a new craniodigital syndrome distinguishable from POBINDS.

3.
Front Mol Biosci ; 9: 831693, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35445078

RESUMO

Specific de novo mutations in the CSNK2A1 gene, which encodes CK2α, the catalytic subunit of protein kinase CK2, are considered as causative for the Okur-Chung neurodevelopmental syndrome (OCNDS). OCNDS is a rare congenital disease with a high phenotypic diversity ranging from neurodevelopmental disabilities to multi-systemic problems and characteristic facial features. A frequent OCNDS mutation is the exchange of Lys198 to Arg at the center of CK2α's P+1 loop, a key element of substrate recognition. According to preliminary data recently made available, this mutation causes a significant shift of the substrate specificity of the enzyme. We expressed the CK2αLys198Arg recombinantly and characterized it biophysically and structurally. Using isothermal titration calorimetry (ITC), fluorescence quenching and differential scanning fluorimetry (Thermofluor), we found that the mutation does not affect the interaction with CK2ß, the non-catalytic CK2 subunit, and that the thermal stability of the protein is even slightly increased. However, a CK2αLys198Arg crystal structure and its comparison with wild-type structures revealed a significant shift of the anion binding site harboured by the P+1 loop. This observation supports the notion that the Lys198Arg mutation causes an alteration of substrate specificity which we underpinned here with enzymological data.

4.
J Med Chem ; 65(2): 1302-1312, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-34323071

RESUMO

CK2α and CK2α' are paralogous catalytic subunits of CK2, which belongs to the eukaryotic protein kinases. CK2 promotes tumorigenesis and the spread of pathogenic viruses like SARS-CoV-2 and is thus an attractive drug target. Efforts to develop selective CK2 inhibitors binding offside the ATP site had disclosed the αD pocket in CK2α; its occupation requires large conformational adaptations of the helix αD. As shown here, the αD pocket is accessible also in CK2α', where the necessary structural plasticity can be triggered with suitable ligands even in the crystalline state. A CK2α' structure with an ATP site and an αD pocket ligand guided the design of the bivalent CK2 inhibitor KN2. It binds to CK2 with low nanomolar affinity, is cell-permeable, and suppresses the intracellular phosphorylation of typical CK2 substrates. Kinase profiling revealed a high selectivity of KN2 for CK2 and emphasizes the selectivity-promoting potential of the αD pocket.


Assuntos
Caseína Quinase II/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Trifosfato de Adenosina/metabolismo , Caseína Quinase II/química , Caseína Quinase II/metabolismo , Cristalização , Células HEK293 , Células HeLa , Humanos , Ligantes , Fosforilação , Conformação Proteica , Especificidade por Substrato
5.
Anal Chim Acta ; 1179: 338826, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34535248

RESUMO

Fluorescence-based methods for the identification of enzyme inhibitors are widespread, but usually require protein or ligand labelling. In this study, we present a label-free displacement assay that takes advantage of the intrinsic fluorescence of a tight binding ligand avoiding any labeling. Autodisplay-based accessibility of the target enzyme on the cell surface of Escherichia coli enabled the quantification of fluorescent ligand binding by flow cytometry. Human protein kinase CK2 was used as proof-of-concept enzyme and its ATP competitive inhibitor (E)-1,3-dichloro-6-[(4-methoxyphenylimino)methyl]dibenzo[b,d]furan-2,7-diol (compound 5) was shown to exhibit intrinsic fluorescence (λmax(ex) = 370 nm, λmax(em) = 585 nm). Binding of compound 5 to CK2 displaying cells was quantified via flow cytometry with linearly increasing relative fluorescence up to a concentration of 1.25 µM. The addition of the non-fluorescent CK2 inhibitor 4,5,6,7-tetrabromobenzotriazole (TBB) competed for compound 5 binding with a half maximal fluorescence reduction at 15.6 µM TBB. This new and simple binding assay provides a valuable tool for the screening of high affinity enzyme inhibitors, overcoming the limitations of fluorescent ligand labelling.


Assuntos
Inibidores Enzimáticos , Inibidores de Proteínas Quinases , Inibidores Enzimáticos/farmacologia , Citometria de Fluxo , Humanos , Inibidores de Proteínas Quinases/farmacologia
6.
J Med Chem ; 63(14): 7766-7772, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32589844

RESUMO

Selective inhibitors of protein kinase CK2 with significant cytotoxicity on tumor cells based on a 2-aminothiazole scaffold were described recently. Here, these studies are supplemented with representative CK2α/CK2α' complex structures. They reveal that the 2-aminothiazole-based inhibitors occupy the ATP cavity, whereas preliminary data had indicated an allosteric binding site. The crystal structure findings are corroborated by subsequent enzyme kinetic studies; their atomic-resolution quality provides the basis for future optimization of these promising CK2 inhibitors.


Assuntos
Caseína Quinase II/antagonistas & inibidores , Caseína Quinase II/metabolismo , Inibidores de Proteínas Quinases/metabolismo , Tiazóis/metabolismo , Sítios de Ligação , Caseína Quinase II/química , Cristalografia por Raios X , Ensaios Enzimáticos , Humanos , Cinética , Ligação Proteica , Inibidores de Proteínas Quinases/química , Tiazóis/química
7.
Bioorg Chem ; 96: 103608, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32058103

RESUMO

Protein kinase CK2, a heterotetrameric holoenzyme composed of two catalytic chains (CK2α) attached to a homodimer of regulatory subunits (CK2ß), is a target for drug development for cancer therapy. Here, we describe the tetraiodobenzimidazole derivative ARC-3140, a bisubstrate inhibitor addressing the ATP site and the substrate-binding site of CK2 with extraordinary affinity (Ki = 84 pM). In a crystal structure of ARC-3140 in complex with CK2α, three copies of the inhibitor are visible, one of them at the CK2ß interface of CK2α. Subsequent interaction studies based on microscale thermophoresis and fluorescence anisotropy changes revealed a significant impact of ARC-3140 and of its tetrabromo equivalent ARC-1502 on the CK2α/CK2ß interaction. A structural inspection revealed that ARC-3140, unlike CK2ß antagonists described so far, interferes with both sub-interfaces of the bipartite CK2α/CK2ß interaction. Thus, ARC-3140 is a lead for the further development of highly effective compounds perturbating the quaternary structure of the CK2α2ß2 holoenzyme.


Assuntos
Benzimidazóis/química , Benzimidazóis/farmacologia , Caseína Quinase II/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Caseína Quinase II/química , Caseína Quinase II/metabolismo , Domínio Catalítico/efeitos dos fármacos , Cristalografia por Raios X , Halogenação , Humanos , Simulação de Acoplamento Molecular , Multimerização Proteica/efeitos dos fármacos , Estrutura Quaternária de Proteína/efeitos dos fármacos , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
8.
ACS Omega ; 4(3): 5471-5478, 2019 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-31559376

RESUMO

CK2α and CK2α' are the two isoforms of the catalytic subunit of human protein kinase CK2, an important target for cancer therapy. They have similar, albeit not identical functional and structural properties, and were occasionally reported to be inhibited with distinct efficacies by certain ATP-competitive ligands. Here, we present THN27, an indeno[1,2-b]indole derivative, as a further inhibitor with basal isoform selectivity. The selectivity disappears when measured using CK2α/CK2α' complexes with CK2ß, the regulatory CK2 subunit. Co-crystal structures of THN27 with CK2α and CK2α' reveal that subtle differences in the conformational variability of the interdomain hinge region are correlated with the observed effect. In the case of CK2α', a crystallographically problematic protein so far, this comparative structural analysis required the development of an experimental strategy that finally enables atomic resolution structure determinations with ab initio phasing of potentially any ATP-competitive CK2 inhibitor and possibly many non-ATP-competitive ligands as well bound to CK2α'.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...