Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proteomics ; 16(15-16): 2081-94, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27089858

RESUMO

We describe here the use of label-free wide selected-ion monitoring data-independent acquisition (WiSIM-DIA) to identify proteins that are involved in the formation of tomato (Solanum lycopersicum) fruit cuticles and that are regulated by the transcription factor CUTIN DEFICIENT2 (CD2). A spectral library consisting of 11 753 unique peptides, corresponding to 2338 tomato protein groups, was used and the DIA analysis was performed at the MS1 level utilizing narrow mass windows for extraction with Skyline 2.6 software. We identified a total of 1140 proteins, 67 of which had expression levels that differed significantly between the cd2 tomato mutant and the wild-type cultivar M82. Differentially expressed proteins including a key protein involved in cutin biosynthesis, were selected for validation by target SRM/MRM and by Western blot analysis. In addition to confirming a role for CD2 in regulating cuticle formation, the results also revealed that CD2 influences pathways associated with cell wall biology, anthocyanin biosynthesis, plant development, and responses to stress, which complements findings of earlier RNA-Seq experiments. Our results provide new insights into molecular processes and aspects of fruit biology associated with CD2 function, and demonstrate that the WiSIM-DIA is an effective quantitative approach for global protein identifications.


Assuntos
Frutas/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Proteômica/métodos
2.
Cell Rep ; 10(10): 1735-1748, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25772360

RESUMO

Nucleoplasmin (Npm) is an abundant histone chaperone in vertebrate oocytes and embryos. During embryogenesis, regulation of Npm histone binding is critical for its function in storing and releasing maternal histones to establish and maintain the zygotic epigenome. Here, we demonstrate that Xenopus laevis Npm post-translational modifications (PTMs) specific to the oocyte and egg promote either histone deposition or sequestration, respectively. Mass spectrometry and Npm phosphomimetic mutations used in chromatin assembly assays identified hyperphosphorylation on the N-terminal tail as a critical regulator for sequestration. C-terminal tail phosphorylation and PRMT5-catalyzed arginine methylation enhance nucleosome assembly by promoting histone interaction with the second acidic tract of Npm. Electron microscopy reconstructions of Npm and TTLL4 activity toward the C-terminal tail demonstrate that oocyte- and egg-specific PTMs cause Npm conformational changes. Our results reveal that PTMs regulate Npm chaperoning activity by modulating Npm conformation and Npm-histone interaction, leading to histone sequestration in the egg.

3.
Artigo em Inglês | MEDLINE | ID: mdl-25302076

RESUMO

BACKGROUND: Stored, soluble histones in eggs are essential for early development, in particular during the maternally controlled early cell cycles in the absence of transcription. Histone post-translational modifications (PTMs) direct and regulate chromatin-templated transactions, so understanding the nature and function of pre-deposition maternal histones is essential to deciphering mechanisms of regulation of development, chromatin assembly, and transcription. Little is known about histone H2A pre-deposition modifications nor known about the transitions that occur upon the onset of zygotic control of the cell cycle and transcription at the mid-blastula transition (MBT). RESULTS: We isolated histones from staged Xenopus laevis oocytes, eggs, embryos, and assembled pronuclei to identify changes in histone H2A modifications prior to deposition and in chromatin. Soluble and chromatin-bound histones from eggs and embryos demonstrated distinct patterns of maternal and zygotic H2A PTMs, with significant pre-deposition quantities of S1ph and R3me1, and R3me2s. We observed the first functional distinction between H2A and H4 S1 phosphorylation, as we showed that H2A and H2A.X-F (also known as H2A.X.3) serine 1 (S1) is phosphorylated concomitant with germinal vesicle breakdown (GVBD) while H4 serine 1 phosphorylation occurs post-MBT. In egg extract H2A/H4 S1 phosphorylation is independent of the cell cycle, chromatin assembly, and DNA replication. H2AS1ph is highly enriched on blastula chromatin during repression of zygotic gene expression while H4S1ph is correlated with the beginning of maternal gene expression and the lengthening of the cell cycle, consistent with distinct biological roles for H2A and H4 S1 phosphorylation. We isolated soluble H2A and H2A.X-F from the egg and chromatin-bound in pronuclei and analyzed them by mass spectrometry analysis to quantitatively determine abundances of S1ph and R3 methylation. We show that H2A and H4 S1ph, R3me1 and R3me2s are enriched on nucleosomes containing both active and repressive histone PTMs in human A549 cells and Xenopus embryos. CONCLUSIONS: Significantly, we demonstrated that H2A phosphorylation and H4 arginine methylation form a new class of bona fide pre-deposition modifications in the vertebrate embryo. We show that S1ph and R3me containing chromatin domains are not correlated with H3 regulatory PTMs, suggesting a unique role for phosphorylation and arginine methylation.

4.
Proteomics ; 14(7-8): 820-828, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23754577

RESUMO

Imaging MS is routinely used to show spatial localization of proteins within a tissue sample and can also be employed to study temporal protein dynamics. The antimicrobial S100 protein calprotectin, a heterodimer of subunits S100A8 and S100A9, is an abundant cytosolic component of neutrophils. Using imaging MS, calprotectin can be detected as a marker of the inflammatory response to bacterial challenge. In a murine model of Acinetobacter baumannii pneumonia, protein images of S100A8 and S100A9 collected at different time points throughout infection aid in visualization of the innate immune response to this pathogen. Calprotectin is detectable within 6 h of infection as immune cells respond to the invading pathogen. As the bacterial burden decreases, signals from the inflammatory proteins decrease. Calprotectin is no longer detectable 96-144 h post infection, correlating to a lack of detectable bacterial burden in lungs. These experiments provide a label-free, multiplexed approach to study host response to a bacterial threat and eventual clearance of the pathogen over time.


Assuntos
Calgranulina A/isolamento & purificação , Calgranulina B/isolamento & purificação , Complexo Antígeno L1 Leucocitário/isolamento & purificação , Pulmão/patologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Infecções por Acinetobacter/diagnóstico , Infecções por Acinetobacter/genética , Infecções por Acinetobacter/patologia , Acinetobacter baumannii/isolamento & purificação , Acinetobacter baumannii/patogenicidade , Animais , Calgranulina A/genética , Calgranulina B/genética , Humanos , Imunidade Inata , Pulmão/microbiologia , Camundongos , Imagem Molecular , Neutrófilos/metabolismo , Neutrófilos/microbiologia , Proteômica
5.
Anal Chem ; 85(15): 7191-6, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23829295

RESUMO

Transmembrane proteins are greatly underrepresented in data generated by imaging mass spectrometry (IMS) because of analytical challenges related to their size and solubility. Here, we present the first example of MALDI IMS of two highly modified multitransmembrane domain proteins, myelin proteolipid protein (PLP, 30 kDa) and DM-20 (26 kDa), from various regions of rat brain, namely, the cerebrum, cerebellum, and medulla. We utilize a novel tissue pretreatment aimed at transmembrane protein enrichment to show the in situ distribution of fatty acylation of these proteins, particularly of post-translational palmitoylation. Additionally, we demonstrate the utility of protease-encapsulated hydrogels for spatially localized on-tissue protein digestion and peptide extraction for subsequent direct coupling to LC-MS/MS for protein identification.


Assuntos
Encéfalo/metabolismo , Imagem Molecular/métodos , Proteína Proteolipídica de Mielina/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Ratos , Ratos Sprague-Dawley , Tripsina/metabolismo
6.
Anal Chem ; 85(5): 2717-23, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23402265

RESUMO

A simultaneous on-tissue proteolytic digestion and extraction method is described for the in situ analysis of proteins from spatially distinct areas of a tissue section. The digestion occurs on-tissue within a hydrogel network, and peptides extracted from this gel are identified with liquid chromatography tandem MS (LC-MS/MS). The hydrogels are compatible with solubility agents (e.g., chaotropes and detergents) known to improve enzymatic digestion of proteins. Additionally, digestions and extractions are compatible with imaging mass spectrometry (IMS) experiments. As an example application, an initial IMS experiment was conducted to profile lipid species using a traveling wave ion mobility mass spectrometer. On-tissue MS/MS was also performed on the same tissue section to identify lipid ions that showed spatial differences. Subsequently, the section underwent an on-tissue hydrogel digestion to reveal 96 proteins that colocalized to the rat brain cerebellum. Hematoxylin and eosin (H & E) staining was then performed to provide additional histological information about the tissue structure. This technology provides a versatile workflow that can be used to correlate multiple complementary analytical approaches in the analysis of a single tissue section.


Assuntos
Fracionamento Químico/métodos , Hidrogéis/química , Proteínas/isolamento & purificação , Proteínas/metabolismo , Proteólise , Animais , Cérebro/metabolismo , Cromatografia Líquida , Peso Molecular , Proteínas/química , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem
7.
Biochemistry ; 52(22): 3807-17, 2013 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-23394619

RESUMO

Membrane proteins are abundant, critically important biomolecules that conduct essential functions in all cells and are the targets of a significant number of therapeutic drugs. However, the analysis of their expression, modification, protein-protein interactions, and structure by mass spectrometry has lagged behind similar studies of soluble proteins. Here we review the limitations to analysis of integral membrane and membrane-associated proteins and highlight advances in sample preparation and mass spectrometry methods that have led to the successful analysis of this protein class. Advances in the analysis of membrane protein posttranslational modification, protein-protein interaction, protein structure, and tissue distributions by imaging mass spectrometry are discussed. Furthermore, we focus our discussion on the application of mass spectrometry for the analysis of aquaporins as a prototypical integral membrane protein and how advances in analytical methods have revealed new biological insights into the structure and function of this family of proteins.


Assuntos
Aquaporinas/análise , Espectrometria de Massas/métodos , Proteômica/métodos , Acilação , Animais , Ácidos Graxos/metabolismo , Humanos , Marcação por Isótopo/métodos , Proteínas de Membrana/análise , Proteínas de Membrana/isolamento & purificação , Fosforilação , Processamento de Proteína Pós-Traducional , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massas em Tandem/métodos
8.
Cell Host Microbe ; 11(6): 664-73, 2012 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-22704626

RESUMO

Systemic bacterial infection is characterized by a robust whole-organism inflammatory response. Analysis of the immune response to infection involves technologies that typically focus on single organ systems and lack spatial information. Additionally, the analysis of individual inflammatory proteins requires antibodies specific to the protein of interest, limiting the panel of proteins that can be analyzed. Herein we describe the application of matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) to mice systemically infected with Staphylococcus aureus to identify inflammatory protein masses that respond to infection throughout an entire infected animal. Integrating the resolution afforded by magnetic resonance imaging (MRI) with the sensitivity of MALDI IMS provides three-dimensional spatially resolved information regarding the distribution of innate immune proteins during systemic infection, allowing comparisons to in vivo structural information and soft-tissue contrast via MRI. Thus, integrating MALDI IMS with MRI provides a systems-biology approach to study inflammation during infection.


Assuntos
Inflamação/imunologia , Inflamação/patologia , Patologia/métodos , Sepse/imunologia , Sepse/patologia , Imagem Corporal Total/métodos , Animais , Feminino , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Camundongos , Camundongos Endogâmicos BALB C , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Staphylococcus aureus/imunologia , Staphylococcus aureus/patogenicidade
9.
J Biol Chem ; 284(2): 1075-85, 2009 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-18957437

RESUMO

Epigenetic information is hypothesized to be encoded in histone variants and post-translational modifications. Varied cell- and locus-specific combinations of these epigenetic marks are likely contributors to regulation of chromatin-templated transactions, including transcription, replication, recombination, and repair. Therefore, the relative abundance of histone modifications in a given cell type is a potential index of cell fate and specificity. Here, we utilize mass spectrometry techniques to characterize the relative abundance index of cell type-specific modifications on histones H3 and H4 in distinct cell types from the frog Xenopus laevis, including the sperm, the stored predeposition histones in the egg, the early embryo equivalent pronuclei, cultured somatic cells, and erythrocytes. We used collisionally associated dissociation to identify the modifications present on histone H3 in a variety of cell types, resolving 26 distinctly modified H3 peptides. We employed the electron transfer dissociation fragmentation technique in a "middle-down" approach on the H4 N-terminal tail to explore the overlap of post-translational modifications. We observed 66 discrete isoforms of the H4 1-23 fragment in four different cell types. Isolation of the stored, predeposition histone H4 from the frog egg also revealed a more varied pattern of modifications than the previously known diacetylation on Lys(5) and Lys(12). The developmental transitions of modifications on H3 and H4 were strikingly varied, implying a strong correlation of the histone code with cell type and fate. Our results are consistent with a histone code index for each cell type and uncover potential cross-talk between modifications on a single tail.


Assuntos
Histonas/análise , Histonas/química , Xenopus laevis , Sequência de Aminoácidos , Animais , Células Cultivadas , Feminino , Histonas/classificação , Histonas/metabolismo , Masculino , Espectrometria de Massas , Dados de Sequência Molecular , Especificidade por Substrato , Xenopus laevis/metabolismo
10.
J Biol Chem ; 284(2): 1064-74, 2009 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-18957438

RESUMO

Histone proteins contain epigenetic information that is encoded both in the relative abundance of core histones and variants and particularly in the post-translational modification of these proteins. We determined the presence of such variants and covalent modifications in seven tissue types of the anuran Xenopus laevis, including oocyte, egg, sperm, early embryo equivalent (pronuclei incubated in egg extract), S3 neurula cells, A6 kidney cells, and erythrocytes. We first developed a new robust method for isolating the stored, predeposition histones from oocytes and eggs via chromatography on heparin-Sepharose, whereas we isolated chromatinized histones via conventional acid extraction. We identified two previously unknown H1 isoforms (H1fx and H1B.Sp) present on sperm chromatin. We immunoblotted this global collection of histones with many specific post-translational modification antibodies, including antibodies against methylated histone H3 on Lys(4), Lys(9), Lys(27), Lys(79), Arg(2), Arg(17), and Arg(26); methylated histone H4 on Lys(20); methylated H2A and H4 on Arg(3); acetylated H4 on Lys(5), Lys(8), Lys(12), and Lys(16) and H3 on Lys(9) and Lys(14); and phosphorylated H3 on Ser(10) and H2A/H4 on Ser(1). Furthermore, we subjected a subset of these histones to two-dimensional gel analysis and subsequent immunoblotting and mass spectrometry to determine the global remodeling of histone modifications that occurs as development proceeds. Overall, our observations suggest that each metazoan cell type may have a unique histone modification signature correlated with its differentiation status.


Assuntos
Processamento Alternativo/genética , Histonas/isolamento & purificação , Histonas/metabolismo , Xenopus laevis/metabolismo , Animais , Feminino , Histonas/classificação , Histonas/genética , Masculino , Processamento de Proteína Pós-Traducional , Técnicas de Cultura de Tecidos , Xenopus laevis/embriologia , Xenopus laevis/genética , Xenopus laevis/crescimento & desenvolvimento
11.
Nitric Oxide ; 18(1): 11-8, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18023374

RESUMO

The modification of protein and non-protein thiols by oxidants including hydrogen peroxide (H(2)O(2)), peroxynitrite anion (ONOO(-)) and hypochlorous acid (HOCl) is well documented. Using an aromatic thiol, 5-thio-2-nitrobenzoic acid, and biologically relevant oxidants, we have identified higher oxidation states of sulfur including the sulfonic acid derivative and the disulfide S-oxide, a thiosulfinate, by HPLC and mass spectrometry. The initial reaction of ONOO(-) with 5-thio-2-nitrobenzoic acid yielded a transient red intermediate, the sulfenate anion. The red intermediate was observed when ONOO(-) and H(2)O(2) were used to oxidize 5-thio-2-nitrobenzoic acid and it persisted for several seconds at pH 7. HOCl oxidized the disulfide, 5,5'dithiobis(2-nitrobenzoic acid) to the corresponding sulfonic acid and no additional products were detected. Using this system, we can directly compare the thiol-oxidizing abilities of several oxidants. Because 5-thio-2-nitrobenzoic acid is the product of the reaction of Ellman's reagent with protein thiols, a detailed study of its stability in biological matrices where oxidants may be generated is warranted.


Assuntos
Peróxido de Hidrogênio/química , Ácido Hipocloroso/química , Nitrobenzoatos/química , Oxidantes/química , Ácido Peroxinitroso/química , Compostos de Sulfidrila/química , Ânions/química , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , Estrutura Molecular , Oxirredução , Ácidos Sulfênicos/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA